首页 | 本学科首页   官方微博 | 高级检索  
     检索      

深亚微米金属氧化物场效应晶体管及寄生双极晶体管的总剂量效应研究
引用本文:王信,陆妩,吴雪,马武英,崔江维,刘默寒,姜柯,Ma Wu-Ying,Cui Jiang-Wei,Liu Mo-Han,Jiang Ke.深亚微米金属氧化物场效应晶体管及寄生双极晶体管的总剂量效应研究[J].物理学报,2014,63(22):226101-226101.
作者姓名:王信  陆妩  吴雪  马武英  崔江维  刘默寒  姜柯  Ma Wu-Ying  Cui Jiang-Wei  Liu Mo-Han  Jiang Ke
作者单位:1. 中国科学院新疆理化技术研究所, 中国科学院特殊环境功能材料与器件重点实验室, 乌鲁木齐 830011;2. 新疆电子信息材料与器件重点实验室, 乌鲁木齐 830011;3. 中国科学院大学, 北京 100049
基金项目:模拟集成电路国家重点实验室(NLAIC)基金项目(批准号:9140C090401120C09036)资助的课题.* Project supported by the Foundation of National Laboratory of Analog Integrated Circuits
摘    要:为从工艺角度深入研究航空航天用互补金属氧化物半导体(CMOS)工艺混合信号集成电路总剂量辐射损伤机理, 选取国产CMOS 工艺制作的NMOS晶体管及寄生双极晶体管进行了60Coγ射线源下的总剂量试验研究. 发现: 1) CMOS工艺中固有的寄生效应导致NMOS晶体管截止区漏电流对总剂量敏感, 随总剂量累积而增 大; 2) 寄生双极晶体管总剂量损伤与常规双极晶体管不同, 表现为对总剂量不敏感, 分析认为两者辐射损伤的差异来源于制作工艺的不同; 3)寄生双极晶体管与NMOS晶体 管的总剂量损伤没有耦合效应; 4)基于上述研究成果, 初步分析CMOS工艺混合信号集成电路中数字模块及模拟模块辐射损伤机制, 认为MOS晶体管截止漏电流增大是导致数字模块功耗增大的主因, 而Bandgap电压基准源模块对总剂量不敏感源于寄生双极晶体管抗总剂量辐射的能力. 关键词: 总剂量效应 N沟道金属氧化物场效应晶体管 寄生双极晶体管 Bandgap基准电压源

关 键 词:总剂量效应  N沟道金属氧化物场效应晶体管  寄生双极晶体管  Bandgap基准电压源
收稿时间:2014-05-14

Radiation effect of deep-submicron metal-oxide-semiconductor field-effect transistor and parasitic transistor
Wang Xin,Lu Wu,Wu Xue,Ma Wu-Ying,Cui Jiang-Wei,Liu Mo-Han,Jiang Ke.Radiation effect of deep-submicron metal-oxide-semiconductor field-effect transistor and parasitic transistor[J].Acta Physica Sinica,2014,63(22):226101-226101.
Authors:Wang Xin  Lu Wu  Wu Xue  Ma Wu-Ying  Cui Jiang-Wei  Liu Mo-Han  Jiang Ke
Abstract:The metal-oxide-semiconductor field-effect transistor (MOSFET) and the parasitic bipolar transistor of domestic complementary metal oxide semiconductor (CMOS) process are irradiated with 60Coγ rays to investigate the failure mechanism of the mixed-signal ICs fabricated by deep submicron CMOS process, caused by total dose radiation. The research results are as follows. 1) The parasitic sidewall and top corner regions contribute to the intra-device leakage. 2) The parasitic bipolar transistor of CMOS process is not sensitive to total dose radiation, which is very different from the conventional bipolar transistor. Preliminary analysis suggests that the difference originates from the differences in the structural and making process. 3) The total dose radiation damage to the parasitic bipolar transistors is not coupled with the damage to the NMOS transistor in the same CMOS process. 4) Based on the above study, the radiation failure mechanisms of the analog and digital module in mixed-signal ICs fabricated respectively by the domestic and commercial CMOS process are investigated. Preliminary analysis suggests that the increase of off-leakage current of MOSFET is responsible mainly for the increase in power consumption of digital module, and the insensitivity of bandgap voltage reference to total dose radiation originates from the radiation resistance of the parasitic bipolar transistor which is the important part of bandgap voltage reference in CMOS mixed-signal ICs.
Keywords: total dose radiation NMOSFET parasitic transistor bandgap voltage reference
Keywords:total dose radiation  NMOSFET  parasitic transistor  bandgap voltage reference
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号