首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Emergent Swarming States in Active Particles System with Opposite Anisotropic Interactions
Authors:Yong-liang Gou  Hui-jun Jiang  Zhong-huai Hou
Institution:Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei 230026, China
Abstract:From the organization of animal flocks to the emergence of swarming behaviors in bacterial suspension, populations of motile organisms at all scales display coherent collective motion. Recent studies showed that the anisotropic interaction between active particles plays a key role in the phase behaviors. Here we investigate the collective behaviors of based-active Janus particles that experience an anisotropic interaction of which the orientation is opposite to the direction of active force by using Langevin dynamics simulations in two dimensional space. Interestingly, the system shows emergence of collective swarming states upon increasing the total area fraction of particles, which is not observed in systems without anisotropic interaction or activity. The threshold for emergence of swarming states decreases as particle activity or interaction strength increases. We have also performed basic kinetic analysis to reproduce the essential features of the simulation results. Our results demonstrate that anisotropic interactions at the individual level are sufficient to set homogeneous active particles into stable directed motion.
Keywords:Active particle  Anisotropic interaction  Swarming
本文献已被 万方数据 等数据库收录!
点击此处可从《化学物理学报(中文版)》浏览原始摘要信息
点击此处可从《化学物理学报(中文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号