首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The application of electroanalytical methods to the analysis of phase transitions during intercalation of ions into electrodes
Authors:M D Levi  D Aurbach
Institution:(1) Department of Chemistry, Bar-Ilan University, Ramat Gan, 52900, Israel
Abstract:Mechanisms of first-order phase transition induced by electrochemical intercalation of Li ions into composite graphite electrode are studied both theoretically, in the framework of lattice gas models, and experimentally, by a combination of electroanalytical techniques, such as cyclic voltammetry, potentiostatic intermittent titration (PITT), galvanostatic intermittent titration (GITT), and electrochemical impedance spectroscopy (EIS). From the analysis of the mismatch between the accessible phase-transition rate constants and the characteristic time windows for various electroanalytical methods, we conclude that only a combined application of these techniques provides sufficient, self-consistent information on the mechanisms of phase transitions in graphite electrodes. The advantages and disadvantages in using these techniques are discussed. PITT with a small potential step is the most appropriate tool for measuring the entire sequence of rate-determining steps of phase transitions as a function of time. The latter technique can be conveniently used for quantitative analysis of slow nucleation and the growth of new phases in the bulk of the old one, followed by the coalescence of nuclei and the formation of phase boundaries between the coexisting phases. The movement of this boundary into the electrode’s bulk has been properly modeled in terms of two alternative models. “Contribution to the International Workshop on Electrochemistry of Electroactive Materials (WEEM-2006), Repino, Russia, 24–29 June 2006.”
Keywords:PITT  GITT  EIS  Li-ion batteries  Intercalation  Nucleation and growth  Diffusion  Differential intercalation capacitance  Chemical diffusion coefficient
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号