首页 | 本学科首页   官方微博 | 高级检索  
     


Dispersion relations and mode shapes for waves in laminated viscoelastic composites by variational methods
Authors:Subrata Mukherjee  E.H. Lee
Affiliation:Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York, U.S.A.;Division of Applied Mechanics, Stanford University, Stanford, California, U.S.A.
Abstract:The propagation of oscillatory waves through periodic elastic composites has been analysed on the basis of the Floquet theory. This leads to self-adjoint differential equation systems which it was proved convenient to solve by variational methods. Many composites, such as the light-weight high-strength boron-epoxy material, consist of strong reinforcing components in a plastic matrix. The latter can exhibit viscoelastic properties which can have a significant influence on wave propagation characteristics. Replacement of the elastic constant by the viscoelastic complex modulus changes the mathematical structure so that the differential equation system is no longer self-adjoint. However, a modification of the variational principles is suggested which retains formal self-adjointness, and yields variational principles which contain additional boundary terms. These are applied to the determination of wave speeds and mode shapes for a laminated composite made of homogeneous elastic reinforcing plates in a homogeneous viscoelastic matrix for plane waves propagating normally to the reinforcing plates. These results agree well with the exact solution which can be evaluated in this simple case. The variational principles permit solutions for periodic, but otherwise arbitrary variation of material properties.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号