首页 | 本学科首页   官方微博 | 高级检索  
     

非贵金属助催化剂MXene在光催化领域应用的研究进展
引用本文:李开宁,张苏舒,李宇涵,范佳杰,吕康乐. 非贵金属助催化剂MXene在光催化领域应用的研究进展[J]. 催化学报, 2021, 42(1): 3-14. DOI: 10.1016/S1872-2067(20)63630-0
作者姓名:李开宁  张苏舒  李宇涵  范佳杰  吕康乐
作者单位:中南民族大学资源与环境学院, 催化转化与能源材料化学教育部重点实验室, 湖北武汉430074;重庆工商大学环境与资源学院, 废油资源化技术与装备教育部工程技术研究中心,重庆市催化与环境新材料重点实验室, 重庆400067;郑州大学材料科学与工程学院, 河南郑州450001
基金项目:前沿探索项目;重庆工商大学高层次人才引进项目;China Postdoctoral Science Foundation;中国"博士后创新人才支持计划";the Natural Science Foundation Project of CQ CSTC;中南民族大学中央高校基本科研业务费专项资金;Venture&Innova-tion Support Program for Chongqing Overseas Returnees;China"Post-Doctoral Innovative Talent Support Program";Science and Technology Research Project of Chongqing Education Commission Foundation;国家自然科学基金;重庆市留学人员回国创业创新支持计划;重庆市教委项目;the Fundamental Research Funds for the Central Universities,South-Central University for Nationalities;and Chongqing Technology and Business University Research Foundation Project;This work was supported by the National Natural Science Foundation of China;重庆市基础研究;中国博士后科学基金第64批面上资助"西部地区博士后人才资助计划"项目
摘    要:环境友好型半导体光催化是当前最具前景的光催化技术之一,它不仅能够将太阳能转化为化学能以解决能源危机,还可以将污染物降解矿化从而解决环境问题.但是,传统的半导体光催化剂受限于光利用率低、光生载流子复合率高、稳定性较差等几个方面,无法达到理想的光催化效果.在半导体光催化剂上负载助催化剂是提升光催化效率的有效策略之一.负载助催化剂能够增强光生电荷在半导体与助催化剂界面间的传输,提供额外的催化活性位点,增强光捕获能力,因而被广泛应用于光催化剂的改性.目前广泛使用的贵金属助催化剂包括Au,Ag,Pt,Ru等,虽然这些贵金属助催化剂性能优异,但是它们存在储量少和成本高的问题,严重影响其规模化应用.因此,开展高效且成本低廉的非贵金属助催化剂的研究非常必要.近来,一种新型二维过渡金属材料(MXene)因其具有独特的二维层状结构、优异的导电性能、出色的光学和热力学性质而成为催化领域的研究热点.本文综述了有关非贵金属助催化剂MXene在光催化领域的最新研究进展,内容包括:(1)MXene材料的体相与表面结构特性;(2)薄层MXene的制备方法,例如氢氟酸刻蚀法、氢氟酸替代物刻蚀法以及熔融氟盐刻蚀法;(3)MXene基复合光催化剂的合成及改性策略,包括机械混合、自组装、原位氧化等;(4)MXene辅助增强光催化活性机理.论文还重点介绍了MXene作为助催化剂在光催化领域中的应用,包括光催化分解水产氢、光催化CO2还原、光催化固氮以及有机污染物的光催化降解.最后,论文分析了MXene基异质结光催化剂存在的问题与面临的挑战,并对MXene助催化剂的未来发展进行了展望.主要观点包括:(1)关于光催化分解水、空气净化、合成氨领域的研究较少,需要进一步开展;(2)MXene基异质结光催化剂的反应机理仍存在争议,需采用现代化仪器设备(包括原位表征技术)对其进行更为深入的探究;(3)目前,大多数MXene材料的制备都是通过强腐蚀性的氢氟酸或氢氟酸替代物刻蚀,开发环境友好且高效的MXene制备方法迫在眉睫;(4)阐明MXene表面终端基团的作用有助于提升MXene基复合光催化剂的性能;(5)引入新的改性策略如局域表面等离子体共振效应(LSPR)、缺陷调控、单原子催化(SAC)等来提高MXene基光催化剂的催化性能,是未来MXene基复合催化剂的发展方向.

关 键 词:二维过渡金属材料  光催化降解  产氢  二氧化碳还原  固氮

MXenes as noble-metal-alternative co-catalysts in photocatalysis
Kaining Li,Sushu Zhang,Yuhan Li,Jiajie Fan,Kangle Lv. MXenes as noble-metal-alternative co-catalysts in photocatalysis[J]. Chinese Journal of Catalysis, 2021, 42(1): 3-14. DOI: 10.1016/S1872-2067(20)63630-0
Authors:Kaining Li  Sushu Zhang  Yuhan Li  Jiajie Fan  Kangle Lv
Affiliation:(Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Enducation,College of Resources and Environmental Science,South-Central University for Nationalities,Wuhan 430074,Hubei,China;Engineering Research Center for Waste Oil Recovery Technology and Equipment,Ministry of Education,Chongqing Key Laboratory of Catalysis and New Environmental Materials,Chongqing Technology and Business University,Chongqing 400067,China;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,Henan,China)
Abstract:Photocatalysis has become a focal point in research as a clean and sustainable technology with the potential to solve environmental problems and energy crises. The loading of noble-metal co-catalysts can substantially improve the photocatalytic efficiency of semiconductors. Because the high cost and scarcity of noble metals markedly limit their large-scale applications, finding a no-ble-metal-alternative co-catalyst is crucial. MXene, a novel 2D transition metal material, has at-tracted considerable attention as a promising substitute for noble metal co-catalysts owing to its cost-efficiency, unique 2D layered structure, and excellent electrical, optical, and thermodynamic properties. This review focuses on the latest advancements in research on MXenes as co-catalysts in relatively popular photocatalytic applications (hydrogen production, CO2 reduction, nitrogen fixa-tion, and organic pollutant oxidation). The synthesis methods and photocatalytic mechanisms of MXenes as co-catalysts are also summarized according to the type of MXene-based material. Finally, the crucial opportunities and challenges in the prospective development of MXene-based photo-catalysts are outlined. We emphasize that modern techniques should be used to demonstrate the effects of MXenes on photocatalysis and that the photocatalytic activity of MXene-based photocata-lysts can be further improved using defective engineering and recent phenomena such as the local-ized surface plasmon resonance effect and single-atom catalysis.
Keywords:MXenes  Photocatalytic degradation  Hydrogen production  CO2 reduction  Nitrogen fixation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号