摘 要: | 为提高猪肉价格预测的准确性,结合互补集合经验模态分解(CEEMD)的分解能力和基于遗传算法的支持向量回归(GA-SVR)的自适应预测功能,构建猪肉价格集成预测模型.首先为解决猪肉价格的复杂波动特征,通过CEEMD对猪肉价格分解得到本征模态函数(IMF)序列集;然后使用排序熵(PE)对IMF序列进行复杂度分析,进一步使用快速傅里叶变换方法(FFT)分解复杂度高的序列;再利用灰色关联度(GCD)对IMF序列集进行关联性分析,聚合相似IMF序列;最后基于各IMF序列的数据特征构建相应的GA-SVR预测模型,并将子序列的预测结果集成获得最终价格预测值.以中国集贸市场的猪肉价格为研究对象,实证结果表明,该集成预测模型在预测精度和方向性指标上,显著优于其他单预测模型和分解集成预测模型.
|