首页 | 本学科首页   官方微博 | 高级检索  
     检索      

光降解刚果红的S型硫掺杂g-C3N4/TiO2异质结光催化剂
引用本文:王娟,王国宏,程蓓,余家国,范佳杰.光降解刚果红的S型硫掺杂g-C3N4/TiO2异质结光催化剂[J].催化学报,2021,42(1):56-68.
作者姓名:王娟  王国宏  程蓓  余家国  范佳杰
作者单位:湖北师范大学化学化工学院, 湖北师范大学先进材料研究院, 污染物分析与资源化技术湖北省重点实验室, 湖北黄石435002;武汉理工大学材料复合新技术国家重点实验室, 湖北武汉430070;郑州大学材料科学与工程学院, 河南郑州450001
基金项目:National Key Research and Development Program of China;This work was supported by the National Natural Science Foundation of China;and the Fundamental Research Funds for the Central Universities;中央高校基本科研基金;国家自然科学基金;国家重点研发计划项目
摘    要:含有机物工业废水的处理仍然是人类实现可持续发展的重大挑战.而光催化作为一种先进的氧化环保技术,以其反应条件温和、能耗相对较低的优点在有机废水处理中受到越来越多的关注.近年来,人们设计和合成了许多不同结构和形状的光催化剂.特别是金属氧化物半导体以其适宜的能带结构、稳定的物化性质、无毒性等特点已成为光催化降解有机废水的研究热点.此外,一维纳米结构(1D)已被证实有利于光催化降解过程,其优势在于比表面积大,离子的迁移路径短,以及独特的一维电子转移轨道.尤其是TiO2纳米纤维由于其亲水性、特殊的形貌和合适的能带位置,在污染物水溶液的处理中表现出优异的光催化性能.然而,TiO2(~3.2 eV)的宽禁带、光生载流子的易复合等缺陷导致其光利用率较低,限制了其实际应用.因此,人们提出了许多提高光催化活性的策略,如掺杂金属或非金属元素、负载贵金属、构建异质结等.构建梯形(S型)异质结已被证实是提高复合材料光催化活性的一种有前途的策略.S型异质结不仅能有效地分离光生电子和空穴,而且还原能力低的半导体CB上的电子和氧化能力低的半导体VB上的空穴复合,而氧化还原能力较强的空穴和电子分别被保留.因此,这一电子转移过程赋予了复合物最大的氧化还原能力.同时,在g-C3N4中引入硫元素可以拓宽其光吸收范围,从而产生更多的光生载流子.此外,额外的表面杂质将有助于e?-h+对的分离,其光催化活性明显高于单纯的g-C3N4.综合一维纳米结构、硫掺杂和S型异质结的优势,本文采用静电纺丝和煅烧法制备了一系列硫掺杂的g-C3N4(SCN)/TiO2 S型光催化剂.制备的SCN/TiO2复合材料在光催化降解刚果红(CR)水溶液中表现出比纯TiO2和SCN更优越的光催化性能.光催化活性的显著增强是由于一维分布的纳米结构和S型异质结.此外,XPS分析和DFT计算表明,电子从SCN通过SCN/TiO2复合材料的界面转移到TiO2.在模拟太阳光照射下,界面内建电场、带边缘弯曲和库仑相互作用协同促进了复合物相对无用的电子和空穴的复合.因此,剩余的电子和空穴具有较高的还原性和氧化性,使复合材料具有最高的氧化还原能力.这些结果通过自由基捕获实验、ESR实验和XPS原位分析得到了充分的验证,说明光催化剂中的电子迁移遵循S型异质结机理.本文不仅可以丰富了新型S型异质结光催化剂的设计和制备方面的知识,并为未来解决环境污染问题提供一个有前景的策略.

关 键 词:TiO2纳米纤维  硫掺杂g-C3N4  梯形异质结光催化剂  原位XPS  S型机理

Sulfur-doped g-C3N4/Ti O2 S-scheme heterojunction photocatalyst forCongo Red photodegradation
Juan Wang,Guohong Wang,Bei Cheng,Jiaguo Yu,Jiajie Fan.Sulfur-doped g-C3N4/Ti O2 S-scheme heterojunction photocatalyst forCongo Red photodegradation[J].Chinese Journal of Catalysis,2021,42(1):56-68.
Authors:Juan Wang  Guohong Wang  Bei Cheng  Jiaguo Yu  Jiajie Fan
Institution:(Hubei Key Laboratory of Pollutant Analysis and Reuse Technology,College of Chemistry and Chemical Engineering,Institute for Advanced Materials,Hubei Normal University,Huangshi 435002,Hubei,China;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,Hubei,China;Material Science and Engineering School,Zhengzhou University,Zhengzhou 450001,Henan,China)
Abstract:Constructing step-scheme (S-scheme) heterojunctions has been confirmed as a promising strategy for enhancing the photocatalytic activity of composite materials. In this work, a series of sul-fur-doped g-C3N4 (SCN)/TiO2 S-scheme photocatalysts were synthesized using electrospinning and calcination methods. The as-prepared SCN/TiO2 composites showed superior photocatalytic per-formance than pure TiO2 and SCN in the photocatalytic degradation of Congo Red (CR) aqueous solution. The significant enhancement in photocatalytic activity benefited not only from the 1D well-distributed nanostructure, but also from the S-scheme heterojunction. Furthermore, the XPS analyses and DFT calculations demonstrated that electrons were transferred from SCN to TiO2 across the interface of the SCN/TiO2 composites. The built-in electric field, band edge bending, and Coulomb interaction synergistically facilitated the recombination of relatively useless electrons and holes in hybrid when the interface was irradiated by simulated solar light. Therefore, the remaining electrons and holes with higher reducibility and oxidizability endowed the composite with supreme redox ability. These results were adequately verified by radical trapping experiments, ESR tests, and in situ XPS analyses, suggesting that the electron immigration in the photocatalyst followed the S-scheme heterojunction mechanism. This work can enrich our knowledge of the design and fabri-cation of novel S-scheme heterojunction photocatalysts and provide a promising strategy for solving environmental pollution in the future.
Keywords:TiO2 nanofiber  Sulfur-doped g-C3N4  Step-scheme heterojunction  photocatalysis  In situ XPS  S-scheme mechanism
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号