Adsorption of alpha-chymotrypsin onto mica in laminar flow conditions. Adsorption kinetic constant as a function of tris buffer concentration at pH 8.6 |
| |
Authors: | Vasina Elena N Déjardin Philippe |
| |
Affiliation: | European Membrane Institute, UMR 5635 (CNRS, ENSCM, UMII), Université Montpellier II, CC047, 2 Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France. |
| |
Abstract: | We examined the adsorption kinetics of alpha-chymotrypsin (pH 8.6, 10(-2) to 0.5 M Tris buffer) on muscovite mica in conditions of laminar flow through a slit. The range of buffer concentrations is between two limits: (i) no adsorption in 1 M Tris and (ii) no desorption in 10(-3) M Tris. Studying the dependence of adsorption kinetics on the wall shear rate leads to the determination of the interfacial adsorption kinetic constant ka and the diffusion coefficient. The obtained value for the diffusion coefficient is close to the one expected from the molecular size of alpha-chymotrypsin. The interfacial adsorption kinetic constant of alpha-chymotrypsin decreases when ionic strength increases, while the initial desorption constant (over a part of all the adsorbed population) shows the contrary. Although alpha-chymotrypsin is almost at its isoelectric point, the effect of ionic strength on the adsorption kinetics suggests the importance of electrostatic interactions between the protein and mica. We observed an increase in the adsorption rate, at a surface coverage near 0.14 microg cm(-2), for adsorption in 10(-2) M Tris and the low wall shear rates (<300 s(-1)). This change in the adsorption rate suggests a structural transition, that we assume again to be due to electrostatic interactions, but between proteins. The large dipole moment of the protein may induce this transition, illustrated here by the ferroelectric/antiferroelectric pattern. The variation of the zeta potential with interfacial concentration seems to be in agreement with such a model. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|