首页 | 本学科首页   官方微博 | 高级检索  
     

高分散Ru/FeOx催化剂在二氧化碳选择加氢反应中的应用及其催化活性的调控
引用本文:张迪,罗靖洁,王佳杰,肖鑫,刘岳峰,齐伟,苏党生,储伟. 高分散Ru/FeOx催化剂在二氧化碳选择加氢反应中的应用及其催化活性的调控[J]. 催化学报, 2018, 39(1): 157-166. DOI: 10.1016/S1872-2067(17)62967-X
作者姓名:张迪  罗靖洁  王佳杰  肖鑫  刘岳峰  齐伟  苏党生  储伟
作者单位:四川大学化学工程学院,四川成都610065;中国科学院金属研究所沈阳材料科学国家(联合)实验室,辽宁沈阳110016中国科学院金属研究所沈阳材料科学国家(联合)实验室,辽宁沈阳,110016四川大学化学工程学院,四川成都,610065中国科学院大连化学物理研究所洁净能源国家实验室,辽宁大连,116023中国科学院金属研究所沈阳材料科学国家(联合)实验室,辽宁沈阳110016;中国科学院大连化学物理研究所洁净能源国家实验室,辽宁大连116023
基金项目:国家自然科学基金,中国博士后科学基金,This work was supported by the National Natural Science Foundation of China,China Postdoctoral Science Foundation
摘    要:由于化石能源的大量开采和利用造成CO2过度排放,从而导致严重的温室效应和气候环境问题,给人类生存带来极大威胁.CO2选择加氢反应可以将CO2催化加氢生成高附加值的CO产物.与其他的CO2转化反应策略相比,该过程中H2的消耗更少,成为可有效处理及转化CO2的手段之一.同时,应尽可能抑制CO2深度加氢以及甲烷的产生,研制及设计具有高CO选择性的新型高效催化剂及其构效关系的分析仍十分重要.据报道,负载型贵金属基催化剂的使用有利于H2分子的活化,具有优异的催化活性,因而广泛应用于多种催化反应中.然而,贵金属催化剂实现工业应用的最大挑战是资源的限制及其高额的成本.近年来,由贵金属制备的负载型亚纳米团簇受到广泛关注,主要包括如Au,Pt,Pd,Ru等贵金属,可有效应用于多相催化反应.人们还致力于提高负载型亚纳米团簇的分散度,促进催化剂活性位点的有效暴露,有利于大幅度提高催化剂的有效利用率.本文采用共沉淀法成功制备了超高分散的负载型Ru基催化剂,通过CO2选择加氢-程序升温表面反应(TPSR)和质谱联用技术测试了催化剂性能,发现CO2加氢反应生成CO选择性达100%.采用XRD,BET和TEM等方法对催化剂结构进行表征,并结合H2-TPR,H2-TPD和XPS等表征结果深入探讨了催化剂构效关系,并提出了针对该催化剂体系较为合理的反应模型.在CO2选择加氢反应的催化性能测试中,2.50%Ru/FeOx催化剂对目标产物CO选择性仅为41%; 随着Ru负载量降低至0.25%和0.1%时,CO选择性明显提高至80%; 当进一步降低Ru含量至0.01%时,CO选择性接近100%,且表现出优异的反应速率.在360 oC时,0.01%Ru/FeOx催化剂的相对反应速率为7.71 molCO2molRu-1 min-1,是2.50%Ru/FeOx催化剂相对反应速率的154倍.H2-TPR结果表明,贵金属Ru可以明显促进载体FeOx的还原,并产生丰富的氧空位,进而促进CO2的吸附、活化.而且CO2选择加氢TPSR结果显示,目标产物CO的起始生成温度总是滞后于原料H2的初始活化温度,与H2-TPR结果及文献报道的CO2选择加氢反应机理一致.通过H2-TPD深入理解H2在催化剂表面的活化和氢溢流现象,以及Hads与不同催化剂之间的相互作用力,0.01%Ru/FeOx催化剂相对较高的H2脱附峰温度表明,该样品中Ru与Hads具有极强的相互作用力,相对抑制了Hads与COads深入加氢生成CH4,从而提高了CO选择性,而2.50%Ru/FeOx催化剂的情况则与此相反.本文提出了从Hads吸附作用力强弱来考虑CO2选择加氢反应选择性的新思路,同时为设计CO2选择加氢制高附加值CO的高催化反应速率、高CO选择性的高分散Ru基催化剂提供了一种经济简易的催化剂设计思路.

关 键 词:高分散Ru基催化剂  程序升温表面反应  二氧化碳选择加氢  选择性调控  氢原子表面吸附  Highly dispersed Ru/FeOxcatalyst  Temperature-programmed surface reaction  CO2selective hydrogenation  Product selectivity  Hydrogen adsorption
收稿时间:2017-09-20

Ru/FeOxcatalyst performance design:Highly dispersed Ru species for selective carbon dioxide hydrogenation
Di Zhang,Jingjie Luo,Jiajie Wang,Xin Xiao,Yuefeng Liu,Wei Qi,Dang Sheng Su,Wei Chu. Ru/FeOxcatalyst performance design:Highly dispersed Ru species for selective carbon dioxide hydrogenation[J]. Chinese Journal of Catalysis, 2018, 39(1): 157-166. DOI: 10.1016/S1872-2067(17)62967-X
Authors:Di Zhang  Jingjie Luo  Jiajie Wang  Xin Xiao  Yuefeng Liu  Wei Qi  Dang Sheng Su  Wei Chu
Affiliation:1. Department of Chemical Engineering, & Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065, Sichuang, China;2. Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China;3. Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
Abstract:A series of Ru/FeOxcatalysts were synthesized for the selective hydrogenation of CO2to CO. De-tailed characterizations of the catalysts through X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and temperature-programmed techniques were performed to directly monitor the surface chemical properties and the catalytic performance to elucidate the reaction mechanism. Highly dispersed Ru species were observed on the surface of FeOxregardless of the initial Ru loading. Varying the Ru loading resulted in changes to the Ru coverage over the FeOx surface, which had a significant impact on the interaction between Ru and adsorbed H, and concom-itantly,the H2activation capacity via the ability for H2dissociation.FeOxhaving 0.01% of Ru loading exhibited 100% selectivity toward CO resulting from the very strong interaction between Ru and adsorbed H, which limits the desorption of the activated H species and hinders over-reduction of CO to CH4. Further increasing the Ru loading of the catalysts to above 0.01% resulted in the adsorbed H to be easily dissociated, as a result of a weaker interaction with Ru, which allowed excessive CO reduction to produce CH4. Understanding how to selectively design the catalyst by tuning the initial loading of the active phase has broader implications on the design of supported metal catalysts toward preparing liquid fuels from CO2.
Keywords:Temperature-programmed surface reaction  Product selectivity  Hydrogen adsorption
本文献已被 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号