首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Time-of-flight secondary ion mass spectrometry of matrix-diluted oligo- and polypeptides bombarded with slow and fast projectiles: Positive and negative matrix and analyte ion yields, background signals, and sample aging
Authors:Klaus Wittmaack  Wilfried Szymczak  Gerald Hoheisel  Wilfried Tuszynski
Institution:GSF-National Research Center for Environment and Health, Institute of Radiation Protection, Neuherberg, Germany. wittmaack@gsf.de
Abstract:Human angiotensin II, chain B of bovine insulin, and porcine insulin were determined by time-of-flight secondary ion mass spectrometry under impact of approximately 25 keV Xe+ and SF5+ ion beams and approximately 100 MeV 252Cf fission fragments. Matrix-embedded samples, dissolved in a large surplus of alpha-cyano-4-hydroxycinnamic acid, were prepared by nebulizer spray deposition, neat samples by the droplet technique. It is shown that the status of the sample can be assessed by evaluating the matrix-specific features of the mass spectra. The beneficial effect of matrix isolation was small for angiotensin but large for the insulin samples, which did not show parent peaks from neat material. Negative ion yields under SF5+ impact were up to a factor of 50 higher than with Xe+. For positive secondary ions, the enhancement was much smaller. The mass spectra produced by slow ion beams or fast fission fragments were qualitatively similar. Quantitative differences include the following: with fast projectiles the yields were about 10-30 times higher than with slow ions, but similar for negative ion emission under SF5+ bombardment; the analyte-to-matrix yield ratios were higher with slow ions and up to 250 times higher than the molar analyte concentration; for analyte ions the peak-to-background ratios were higher using slow projectiles; the fraction of carbon-rich collisionally formed molecular ions was much higher with fast projectiles. Sample aging in vacuum for up to five weeks strongly reduced the yield of protonated analyte molecules ejected by slow ion impact, but not of deprotonated species. Hence protonation seems to correlate with sample "wetness" or the presence of volatile proton-donating additives.
Keywords:
本文献已被 ScienceDirect PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号