首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes
Authors:Freunberger Stefan A  Chen Yuhui  Peng Zhangquan  Griffin John M  Hardwick Laurence J  Bardé Fanny  Novák Petr  Bruce Peter G
Institution:School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, UK.
Abstract:The nonaqueous rechargeable lithium-O(2) battery containing an alkyl carbonate electrolyte discharges by formation of C(3)H(6)(OCO(2)Li)(2), Li(2)CO(3), HCO(2)Li, CH(3)CO(2)Li, CO(2), and H(2)O at the cathode, due to electrolyte decomposition. Charging involves oxidation of C(3)H(6)(OCO(2)Li)(2), Li(2)CO(3), HCO(2)Li, CH(3)CO(2)Li accompanied by CO(2) and H(2)O evolution. Mechanisms are proposed for the reactions on discharge and charge. The different pathways for discharge and charge are consistent with the widely observed voltage gap in Li-O(2) cells. Oxidation of C(3)H(6)(OCO(2)Li)(2) involves terminal carbonate groups leaving behind the OC(3)H(6)O moiety that reacts to form a thick gel on the Li anode. Li(2)CO(3), HCO(2)Li, CH(3)CO(2)Li, and C(3)H(6)(OCO(2)Li)(2) accumulate in the cathode on cycling correlating with capacity fading and cell failure. The latter is compounded by continuous consumption of the electrolyte on each discharge.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号