首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal and optical properties of electron beam irradiated cellulose triacetate
Authors:S. A. Nouh   Amal Mohamed  H. M. El Hussieny
Affiliation:(1) Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt;(2) Department of Physics, Faculty of Science, Zagazig University, Cairo, Egypt
Abstract:Samples from Cellulose triacetate (CTA) sheets were irradiated with electron beam in the dose range 10–200 kGy. Non-isothermal studies were carried out using thermogravimetric analysis (TGA) to obtain the activation energy of thermal decomposition for CTA polymer. The CTA samples decompose in one main break down stage. The results indicate that the irradiation by electron beam in the dose range 80–200 kGy increases the thermal stability of the polymer samples. Also, the variation of melting temperatures with the electron dose has been determined using differential thermal analysis (DTA). The CTA polymer is characterized by the appearance of one endothermic peak due to melting. It is found that the irradiation in the dose range 10–80 kGy causes defects generation that splits the crystals depressing the melting temperature, while at higher doses (80–200 kGy), the thickness of crystalline structure (lamellae) is increased, thus the melting temperature increases. In addition, the transmission of these samples in the wavelength range 200–2500 nm, as well as any color changes, were studied. The color intensity ΔE* was greatly increased on increasing the electron beam dose, and accompanied by a significant increase in the blue color component.
Keywords:Electron beam irradiation  thermal properties  color response  polymers
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号