首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Broadband noise prediction of fan outlet guide vane using a cascade response function
Authors:H Posson  S Moreau
Institution:a GAUS, Département de Génie Mécanique, Université de Sherbrooke, 2500 Bd. de l'université, Sherbrooke, QC, Canada J1H4X2
b Laboratoire de Mécanique des Fluides et d'Acoustique, École Centrale de Lyon, 36 Av. Guy de Colongue, 69131 Écully Cedex, France
Abstract:An analytical model of the broadband noise produced by both the interaction of ingested turbulence with a fan rotor blades and the rotor-wake impingement on downstream stator vanes is proposed and detailed. The noise prediction methodology is a strip-theory approach based on a previously published formulation of the three-dimensional unsteady blade loading for a rectilinear cascade. This three-dimensional cascade response applied in each strip combined with an acoustic analogy in an annular duct have been chosen to account for the main three-dimensional effects. To further improve some of the identified limitations of this approach, a correction is added to mitigate the effects of the non-coincidence of the cut-on frequencies of the annular duct modes and of the modes of the rectilinear cascade. A correction of the unsteady blade loading formulation, previously developed in a tonal configuration, is also introduced to account for the dispersion relation of annular duct modes in the rectilinear-cascade model. The model is compared with experimental results of the 22-in source diagnostic test (SDT) fan rig of the NASA Glenn Research Center. A numerical assessment of the simplifications proposed in the model and of the convergence of the truncated sums in spanwise wavenumbers and azimuthal orders of the incident perturbation is carried out. The subcritical gusts are shown to have a crucial effect at low frequencies, whereas they become negligible at higher frequencies. Furthermore, alternative high-frequency formulations lead to a satisfactory accuracy above a Helmholtz number based on the duct radius of 20. The strong reduction in computational time associated with these formulations could justify their use for parametric studies in industrial context. The effect of the turbulence model is also investigated showing the relevance of Liepmann's isotropic model in the SDT case, and a possible strong effect of anisotropy in static tests. Finally, the model is compared with NASA's experimental results for two outlet guide vanes at approach condition, showing a very good agreement upstream, whereas an underestimate of 3-5 dB is observed downstream in the middle frequency range.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号