首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The interlayer shear effect on graphene multilayer resonators
Authors:Yilun Liu
Institution:Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
Abstract:Graphene nanostrips with single or few layers can be used as bending resonators with extremely high sensitivity to environmental changes. In this paper we report molecular dynamics (MD) simulation results on the fundamental and secondary resonant frequencies f of cantilever graphene nanostrips with different layer number n and different nanostrip length L. The results deviate significantly from the prediction of not only the Euler-Bernoulli beam theory (fnL−2), but also the Timoshenko's model. Since graphene nanostrips have extremely high intralayer Young's modulus and ultralow interlayer shear modulus, we propose a multibeam shear model (MBSM) that neglects the intralayer stretch but accounts for the interlayer shear. The MBSM prediction of the fundamental and secondary resonant frequencies f can be well expressed in the form ffmono∝(n-1)/n]bL−2(1−b), where fmono denotes the corresponding resonant frequency as the layer number is 1, with b=0.61 and 0.77 for the fundamental and secondary resonant modes. Without any additional parameters fitting, the prediction from MBSM agrees excellently with the MD simulation results. The model is thus of importance for designing multilayer graphene nanostrips based applications, such as resonators, sensors and actuators, where interlayer shear has apparent impacts on the mechanical deformation, vibration and energy dissipation processes therein.
Keywords:Multilayer graphene nanostrips  Resonant frequencies  Molecular dynamics (MD)  Multibeam shear model (MBSM)  Nanomechanical devices
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号