Self-sustained oscillations in pipe systems with multiple deep side branches: Prediction and reduction by detuning |
| |
Authors: | D. Tonon J.F.H. Willems A. Hirschberg |
| |
Affiliation: | Eindhoven University of Technology, Department of Applied Physics, Fluid Dynamics Laboratory Postbus 513, 5600 MB Eindhoven, The Netherlands |
| |
Abstract: | Flow-induced pulsations are frequently observed in pipe networks. In the present work we focus on the case of flow-induced pulsations in a pipe system composed of six equally spaced deep closed side branches. These pulsations are self-sustained aeroacoustic oscillations driven by the instability of the flow along the closed branches. The prediction of pulsations in such complex systems has not yet been proved to be possible, indeed the methods proposed in the literature have only been applied to relatively simple geometries, mainly single or double side branch systems. We propose a prediction model of the self-sustained oscillations in multiple deep side branch systems. This has been established by means of an analytical model for the acoustic wave propagation in which a semi-analytical source model is included. Detuning of the acoustic resonator is often considered as a possible remedial measure to suppress pulsations. Although this countermeasure appears to be very effective for double side branch systems in cross configuration, its effectiveness has never been assessed for different geometries. The effectiveness of the length-detuning on the six side branch system appear to be limited and depends on the upstream and downstream acoustic boundary conditions of the main pipe. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|