首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Two-dimensional adaptive Eulerian-Lagrangian method for mass transport with spatial velocity distribution
Authors:Shaul Sorek
Institution:(1) Ben-Gurion University of the Negev, J. Blaustein Institute for Desert Research, The Water Resources Research Center, 84993 Sede Boqer Campus, Israel;(2) Present address: Department of Bio-Medical Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
Abstract:A Eulerian-Lagrangian scheme is used to solve the two-dimensional advection-dispersion equation. Concentration and its partial differential operator are decomposed into advection and dispersion terms. Thus, advection is formally decoupled from dispersion and solved by continuous forward particle tracking. Dispersion is handled by implicit finite elements on a fixed Eulerian grid. Translation of steep gradients of concentration in advection-dominated flow regimes, is done without numerical distortion. Continuous spatial distribution of velocities are evaluated by using Galerkin's approach in conjunction with Darcy's law based on hydraulic input data from each element. The method was implemented on coarse FE grid with linear shape functions, demonstrating no over/under shooting and practically no numerical dispersion. Simulations, covering a wide range of Peclet numbers, yield high agreement with analytic and practical results.
Keywords:Advection  dispersion  particles  characteristics  finite-element  continuous fluid velocity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号