首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pressure-tuned resonance Raman scattering and photoluminescence studies on MBE grown bulk GaAs at theE 0 gap
Authors:A Jayaraman  G A Kourouklis  R People  S K Sputz  L Pfeiffer
Institution:(1) AT&T Bell Laboratories, 600 Mountain Avenue, 07974 Murray Hill, NJ, USA;(2) Present address: School of Technology, Physics Division, Aristotle University of Thessaloniki, Thessaloniki, Greece
Abstract:Hydrostatic pressure has been used to tune in resonance Raman scattering (RRS) in bulk GaAs. Using a diamond anvil cell, both the photoluminescence peak (PL) and the 2 LO and LO-phonon Raman scattered intensities have been monitored, to establish RRS conditions. When theE 0 gap of GaAs matchesħω S orħω L, the 2 LO and LO-phonon intensity, respectively, exhibit resonance Raman scattering maxima, at pressures determined byħω L. With 647.1 nm radiation (ħω L = 1.916 eV), a sharp and narrow resonance peak at 3.75 GPa is observed for the 2 LO-phonon. At this pressure the 2 LO-phonon goes through its maximum intensity, and falls right on top of the PL peak, revealing thatħω S(2 LO) =E 0. This is the condition for “outgoing” resonance. Experiments with other excitation energies (ħω L) show, that the 2 LO resonance peak-pressure moves to higher pressure with increasingħω L, and the shift follows precisely theE 0 gap. Thus, the 2 LO RRS is an excellent probe to follow theE 0 gap, far beyond the Γ-X cross-over point. A brief discussion of the theoretical expression for resonance Raman cross section is given, and from this the possibility of a double resonance condition for the observed 2 LO resonance is suggested. The LO-phonon resonance occurs at a pressure whenħω LE 0, but the pressure-induced transparency of the GaAs masks the true resonance profile.
Keywords:Pressure-tuning  resonance Raman scattering  semiconductors
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号