首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis and thermal transitions of a soluble,main chain,nematic liquid crystalline polymer exhibiting a kinetically trapped,disordered structure
Authors:H C Shen  C C McDowell  S S Sankar  B D Freeman  R J Kumpf  D A Wicks  C W Lantman  C Noël
Abstract:An aromatic copolyester composed of 25 mol % phenyl hydroquinone, 10 mol % isophthalic acid, 40 mol % chloroterephthalic acid, and 25 mol % t-butyl hydroquinone (PICT) has been synthesized. This amorphous, glassy polymer is soluble in common organic solvents such as methylene chloride. Thin, solution-cast films may be prepared which are in a metastable, vitrified, optically isotropic state. On first heating of an isotropic film at 20°C/min in a calorimeter, one glass transition is observed at low temperature (approximately 49°C) and is ascribed to the glass/rubber transition of the metastable, isotropic polymer. This thermal event is followed by a small exotherm due to the development of order during the scan, which results in a second Tg at approximately 125°C. This Tg is associated with the glass/rubber transition of the ordered polymer. Nematic order can be developed by thermal annealing. The lower Tg increases toward the upper Tg as annealing time is increased. For an initially isotropic film annealed at 90°C, the increase of the lower Tg with annealing time and the increase in birefringence observed by optical microscopy are governed by similar kinetics. Isotropization occurs in the temperature range of 250–300°C. The nematic polymer is slightly more dense than its isotropic analog. No detectable differences between isotropic and nematic samples were observed in rotating frame proton spin lattice relaxation times. © 1996 John Wiley & Sons, Inc.
Keywords:liquid crystalline polymer  nematic  isotropic/nematic transition
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号