首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Temperature and humidity compensation in the determination of solvent vapors with a microsensor system
Authors:Park J  Zellers E T
Institution:Department of Environmental Health Sciences, University of Michigan, Ann Arbor 48109-202, USA.
Abstract:Accounting for changes in temperature and ambient humidity is critical to the development of practical field vapor-monitoring instrumentation employing microfabricated sensor arrays. In this study, responses to six organic vapors were collected from two prototype field instruments over a range of ambient temperatures and relative humidities (RH). Each instrument contains an array of three unthermostated polymer-coated surface acoustic wave (SAW) resonators, a thermally desorbed adsorbent preconcentrator bed, a reversible pump and a small scrubber cartridge. Negligible changes in the vapor sensitivities with atmospheric RH were observed owing, in large part, to the temporal separation of co-adsorbed water from the organic vapor analytes upon thermal desorption of preconcentrated air samples. As a result, calibrations performed at one RH level could be used to determine vapors at any other RH without corrections using standard pattern recognition methods. Negative exponential temperature dependences that agreed reasonably well with those predicted from theory were observed for many of the vapor-sensor combinations. It was possible to select a subset of sensors with structurally diverse polymer coatings whose sensitivities to all six test vapors and selected binary vapor mixtures had similar temperature dependences. Thus, vapor recognition could be rendered independent of temperature and vapor quantification could be corrected for temperature with sufficient accuracy for most applications. The results indicate that active temperature control is not necessary and that temperature and RH compensation is achievable with a relatively simple microsensor system.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号