首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ultraslow dynamics in asymmetric block copolymers with nanospherical domains
Authors:Prashant Mandare  H Henning Winter
Institution:(1) Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
Abstract:Low shear rate and low frequency measurements focused on the extremely slow dynamics of a three-dimensional body-centered cubic (BCC) structure of an asymmetric block copolymer under nanophase-separated conditions. The material studied was poly(styrene-b-ethylene-co-butylene-b-styrene) swollen in a hydrocarbon oil selective for the midblock. Transient viscosities during start-up of shear flow at extremely low shear rates are governed by very long relaxation times and by a modulus that is nearly the same as the plateau modulus obtained from oscillatory shear experiments. Only at extremely low shear rates a zero shear viscosity could be attained. Its very high value is close to the viscosity calculated from stress relaxation experiments. The steady shear viscosity decreases by several orders of magnitude when increasing the shear rate. SAXS experiments on samples sheared even at very low rates indicated loss of the BCC order that was present in the annealed samples before shearing. The SAXS profile recorded on such a sample showed a first-order maximum followed by a broad shoulder indicating a liquid-like short-range order of PS nanospheres in the swollen EB matrix.
Keywords:Block copolymer  Slow dynamics  Steady shear viscosity  Dual structural model  Strain criterion  BCC order  Yield stress
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号