首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Compressional waves in fluid-saturated porous solid containing a penny-shaped crack
Authors:P Phurkhao
Institution:Department of Civil and Environmental Engineering, Rangsit University, Pathumthani 12000, Thailand
Abstract:Diffraction of normal compression waves by a penny-shaped crack in a fluid-saturated porous medium is investigated. Two wave types are considered, namely, compressional wave of the first kind, and the second kind. The former, also known as fast wave, propagates primarily through the solid, whereas the latter or slow wave, propagates mainly in the fluid. Each wave propagates in the medium along with induced wave of the same type in the companion constituent of the material. Application of Biot’s theory in conjunction with integral transform technique reduces the problem to a mixed boundary-value problem whose solution is in turn governed by a Fredholm integral equation of the second kind. Near-field and far-field solutions are obtained in terms of the dynamic stress-intensity factor and the scattering cross section, respectively. They are of particular importance to the linear elastic fracture mechanics (LEFM) and in the scattering theory of elastic waves. The mode I stress-intensity factors are computed numerically for a set of selected material property values, and shown graphically for various mass density and viscosity-to-permeability ratios. The obtained results reveal significant impact of the presence of pore fluid upon the stress-intensity factors, both magnitudes and frequencies at their peak values. The influence of the fluid is also observed from the calculated scattering cross sections of the scattered far-field. Accuracy of the present solution procedure is verified by comparing the numerical results with existing results in the limiting case of dry elastic materials.
Keywords:Penny-shaped crack  Stress-intensity factor  Scattering cross section  Compressional waves  Biot’s theory
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号