首页 | 本学科首页   官方微博 | 高级检索  
     


Neutron stars in relativistic hadron-quark models
Affiliation:1. Physics Department, Indiana University, Bloomington, Indiana 47405 USA;2. Nuclear Theory Center, Indiana University, Bloomington, Indiana 47405 USA;1. Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan;2. KEK Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization, 1-1, Oho, Ibaraki, 305-0801, Japan;3. Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan;1. National Science Centre, Kharkov Institute of Physics and Technology, 61108 Akademicheskaya 1, Kharkov, Ukraine;2. V.N. Karazin Kharkov National University, Dept. of Physics and Technology, 31 Kurchatov, 61108, Kharkov, Ukraine;3. Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany;4. DSM/IRFU/SPhN, CEA/Saclay, 91191 Gif-sur-Yvette, France;5. Univ Paris-Sud, CNRS/IN2P3, Institut de Physique Nucléaire, UMR 8608, 91406 Orsay, France;1. Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, aleja Mickiewicza 30, 30-059 Krakow, Poland;2. Department of Physical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Government ITI, 760010 Berhampur, Odisha, India;1. Departament de Física Tèorica, Universitat de València and IFIC, Universitat de València-CSIC, Dr. Moliner 50, E-46100 Burjassot (València), Spain;2. Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India;3. Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064, India;1. Dipartimento di Fisica, Università degli Studi di Torino & INFN, Sezione di Torino, via Giuria 1, I-10125 Torino, Italy;2. Physics Department, Theory Unit, CERN, CH-1211 Genève 23, Switzerland;1. Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India;2. Department of Physics, Birla Institute of Technology and Science, Pilani - 333031, India
Abstract:Neutron star properties are computed in relativistic models that contain both hadron and quark degrees of freedom. Neutron matter is assumed to have a low-density phase described by quantum hadrodynamics (QHD) and a high-density phase described by quantum chromodynamics (QCD). Several different QHD models and approximations are employed; all use parameters that reproduce the binding energy and density of equilibrium nuclear matter. Calculated neutron star properties depend primarily on the high-density equation of state and cannot be inferred from the symmetry energy or compressibility of equilibrium nuclear matter. If interactions are neglected in the QCD phase, the density of the hadron-quark phase transition is determined by one free parameters, which is the energy/volume needed to create a “bubble” that confines the quarks and gluons. Observed neutron star masses do not constrain this parameter, but stable neutron stars with quark cores can exist only for a limited range of parameter values. When second-order gluon-exchange corrections are included in the QCD phase, these conclusions are unchanged, and the parameter values that lead to stable hadronquark stars are restricted even further.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号