首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Wigner-function formulation of finite-state quantum mechanics
Institution:1. Center for Theoretical Physics, The University of Texas, Austin, Texas 78712 USA;1. Departamento de Física, Universidad de Guadalajara, Revolución 1500, 44420 Guadalajara, Jal., Mexico;2. Departamento de Matemáticas, Universidad de Guadalajara, Revolución 1500, 44420 Guadalajara, Jal., Mexico;1. IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 25A, 1113 Sofia, Bulgaria;2. Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Wien, Austria;1. Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany;2. Department of Physics, Harvard University, 17 Oxford st., Cambridge, MA, 02138, United States
Abstract:For a non-relativistic system with only continous degrees of freedom (no spin, for example), the original Wigner function can be used as an alternative to the density matrix to represent an arbitrary quantum state. Indeed, the quantum mechanics of such systems can be formulated entirely in terms of the Wigner function and other functions on phase space, with no mention of state vectors or operators. In the present paper this Wigner-function formulation is extended to systems having only a finite number of orthogonal states. The “phase space” for such a system is taken to be not continuous but discrete. In the simplest cases it can be pictured as an N×N array of points, where N is the number of orthogonal states. The Wigner function is a real function on this phase space, defined so that its properties are closely analogous to those of the original Wigner function. In this formulation, observables, like states, are represented by real functions on the discrete phase space. The complex numbers still play an important role: they appear in an essential way in the rule for forming composite systems.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号