首页 | 本学科首页   官方微博 | 高级检索  
     


Methacrylic Zwitterionic,Thermoresponsive, and Hydrophilic (Co)Polymers via Cu(0)‐Polymerization: The Importance of Halide Salt Additives
Authors:Alexandre Simula  Athina Anastasaki  David M. Haddleton
Abstract:The synthesis of hydrophilic, thermoresponsive, and zwitterionic polymethacrylates is reported by Cu(0)‐mediated reversible deactivation radical polymerization in water and/or water/alcohol mixtures. The predisproportionation of [CuI(PMDETA)Cl] in water prior to initiator and monomer addition is exploited to yield well‐defined polymethacrylates with full monomer conversions in 30 min. The addition of supplementary halide salts (NaCl) enables the synthesis of various molecular weight poly[poly(ethylene glycol) methyl ether methacrylate] (PEGMA475) (DPn = 10–80, Mn ≈ 10 000–40 000 g mol−1) with full monomer conversion and narrow molecular weight distributions attained in all cases (Đ ≈ 1.20–1.30). A bifunctional PEG initiator (average Mn ≈ 1000 g mol−1) is utilized for the polymerization of a wide range of methacrylates including 2‐dimethylaminoethyl methacrylate, 2‐morpholinoethyl methacrylate, [2‐(methacryloyloxy)ethyl]dimethyl‐(3‐sulfopropyl)ammonium hydroxide, and 2‐methacryloyloxyethyl phosphorylcholine. Despite the high water content, high end group fidelity is demonstrated by in situ chain extensions and block copolymerizations with PEGMA475 yielding well‐defined functional telechelic pentablock copolymers within 2.5 h.
image

Keywords:block copolymers  living polymerization  telechelics  transition‐metal chemistry  water‐soluble polymers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号