Red‐light photodetectors without filters are in urgent need for narrowband applications such as full‐color imaging and multi‐output visible light communication (VLC). However, their development is hindered by the lack of small‐band‐gap and narrowband response materials. Without wavelength filters, a new type of photodetector with a simple single‐layer architecture is developed, based on a stable small‐band‐gap squarylium dye and characterized by a detectivity peak at 680 nm and full width at half maximum of 80 nm. The device, which exhibits high stability in air and humid conditions, shows a significantly low dark current of ∼2 nA·cm−2 at −2 V and high specific detectivity of 3.2 × 1012 Jones. The response current ratio of the device to red, green, and blue lights with a luminous flux amplitude ratio of 3:6:1 (standard ratio for white light) is 100:12:1.1. These properties indicate that the squarylium dye red‐light photodetectors are promising for VLC and other narrowband optoelectronic applications.