首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Metamaterial absorber integrated microfluidic terahertz sensors
Authors:Xin Hu  Gaiqi Xu  Long Wen  Huacun Wang  Yuncheng Zhao  Yaxin Zhang  David R S Cumming  Qin Chen
Abstract:Spatial overlap between the electromagnetic fields and the analytes is a key factor for strong light‐matter interaction leading to high sensitivity for label‐free refractive index sensing. Usually, the overlap and therefore the sensitivity are limited by either the localized near field of plasmonic antennas or the decayed resonant mode outside the cavity applied to monitor the refractive index variation. In this paper, by constructing a metal microstructure array‐dielectric‐metal (MDM) structure, a novel metamaterial absorber integrated microfluidic (MAIM) sensor is proposed and demonstrated in terahertz (THz) range, where the dielectric layer of the MDM structure is hollow and acts as the microfluidic channel. Tuning the electromagnetic parameters of metamaterial absorber, greatly confined electromagnetic fields can be obtained in the channel resulting in significantly enhanced interaction between the analytes and the THz wave. A high sensitivity of 3.5 THz/RIU is predicted. The experimental results of devices working around 1 THz agree with the simulation ones well. The proposed idea to integrate metamaterial and microfluid with a large light‐matter interaction can be extended to other frequency regions and has promising applications in matter detection and biosensing.
image

Keywords:Metamaterial  surface plasmon  perfect absorber  microfluid  terahertz sensor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号