首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetic parameters for thermal decomposition of microcrystalline,vegetal, and bacterial cellulose
Authors:Hernani S Barud  Clóvis A Ribeiro  Jorge M V Capela  Marisa S Crespi  Sidney J L Ribeiro  Younes Messadeq
Institution:1.Institute of Chemistry,Araraquara-Paulista State University,Araraquara,Brazil
Abstract:Cellulose can be obtained from innumerable sources such as cotton, trees, sugar cane bagasse, wood, bacteria, and others. The bacterial cellulose (BC) produced by the Gram-negative acetic-acid bacterium Acetobacter xylinum has several unique properties. This BC is produced as highly hydrated membranes free of lignin and hemicelluloses and has a higher molecular weight and higher crystallinity. Here, the thermal behavior of BC, was compared with those of microcrystalline (MMC) and vegetal cellulose (VC). The kinetic parameters for the thermal decomposition step of the celluloses were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and at heating rates of 5, 10, and 20 °C/min, the E α and B α terms could be determined and consequently the pre-exponential factor A α as well as the kinetic model g(α). The pyrolysis of celluloses followed kinetic model g(a) = - ln(1 - a)]1 \mathord/ \vphantom 1 1.63 1.63 g(\alpha ) = - \ln (1 - \alpha )]^{{{1 \mathord{\left/ {\vphantom {1 {1.63}}} \right. \kern-\nulldelimiterspace} {1.63}}}} on average, characteristic for Avrami–Erofeev with only small differences in activation energy. The fractional value of n may be related to diffusion-controlled growth, or may arise from the distributions of sizes or shapes of the reactant particles.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号