首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Propensity of α‐Aminoisobutyric Acid (=2‐Methylalanine; Aib) to Induce Helical Secondary Structure in an α‐Heptapeptide: A Computational Study
Authors:Dongqi Wang  Michael Friedmann  Zrinka Gattin  Bernhard Jaun  Wilfred?F van?Gunsteren
Institution:1. Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, CH‐8093 Zürich;2. Laboratory of Organic Chemistry, Swiss Federal Institute of Technology, ETH, CH‐8093 Zürich
Abstract:We present a molecular‐dynamics simulation study of an α‐heptapeptide containing an α‐aminoisobutyric acid (=2‐methylalanine; Aib) residue, Val1‐Ala2‐Leu3‐Aib4‐Ile5‐Met6‐Phe7, and a quantum‐mechanical (QM) study of simplified models to investigate the propensity of the Aib residue to induce 310/α‐helical conformation. For comparison, we have also performed simulations of three analogues of the peptide with the Aib residue being replaced by L ‐Ala, D ‐Ala, and Gly, respectively, which provide information on the subtitution effect at C(α) (two Me groups for Aib, one for L ‐Ala and D ‐Ala, and zero for Gly). Our simulations suggest that, in MeOH, the heptapeptide hardly folds into canonical helical conformations, but appears to populate multiple conformations, i.e., C7 and 310‐helical ones, which is in agreement with results from the QM calculations and NMR experiments. The populations of these conformations depend on the polarity of the solvent. Our study confirms that a short peptide, though with the presence of an Aib residue in the middle of the chain, does not have to fold to an α‐helical secondary structure. To generate a helical conformation for a linear peptide, several Aib residues should be present in the peptide, either sequentially or alternatively, to enhance the propensity of Aib‐containing peptides towards the helical conformation. A correction of a few of the published NMR data is reported.
Keywords:α  ‐Aminoisobutyric acid (Aib)  Helical secondary structure  Peptides  Molecular‐dynamics simulations  Quantum‐mechanical investigations  Oligopeptides  Density‐functional theory (DFT)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号