首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrodynamic Characteristics and Adsorption Particularity of Nanobiological Feedstock Along the Bed Height in a Novel Chromatography Column
Authors:Jahanshahi  Mohsen  Mosavian  Mohammad Taghi Hamed  Otaghsara   Elham Sadat Taheri
Affiliation:1.Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol University of Technology, P.O. Box 484, Babol, Iran
;2.Faculty of Chemical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
;
Abstract:

Expanded bed adsorption (EBA) is a practical method for the separation of nanoparticulates. In order to analysis the local hydrodynamic and adsorption behavior of nanoparticle (NP)-based biological feedstock, a modified Nano Biotechnology Group EBA column with a 26-mm inner diameter was used to withdraw liquid from different axial positions of the column. Fabricated egg albumin (EA) NPs with an average size of 70 nm were employed as a model system and viral size/charge mimic to assess the relationship between hydrodynamic and adsorption performance of NPs at the different column regions. The effects of influential factors, including flow velocity and initial concentration of NPs, on NP hydrodynamic behavior and adsorption kinetics along the bed height were investigated. NP hydrodynamic studies confirmed that non-uniform behavior dominated the system and a decreasing trend of liquid mixing/dispersion with increase of bed height was observed in this column. The results demonstrated an increase in the mixing/dispersion at certain bed heights with the increase in both the velocity and feed initial concentration. Breakthrough curves were measured at various column points to determine the adsorption performance [dynamic binding capacity (DBC) and yield] in different bed positions/zones. Yield and DBC of NPs were improved along the bed height, whereas liquid velocity had the opposite effect. Increasing the initial concentration of NPs enhanced only the DBC. Separation of EA NPs under optimal conditions was 87 %, which is an excellent result for a one-pass frontal chromatography method.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号