首页 | 本学科首页   官方微博 | 高级检索  
     


Topochemical Engineering of Cellulose—Carboxymethyl Cellulose Beads: A Low-Field NMR Relaxometry Study
Authors:Pieter De Wever,Rodrigo de Oliveira-Silva,Joã  o Marreiros,Rob Ameloot,Dimitrios Sakellariou,Pedro Fardim
Affiliation:1.Bio- & Chemical Systems Technology, Reactor Engineering and Safety Section, Department of Chemical engineering, KU Leuven, Celestijnenlaan 200f, P.O. Box 2424, 3001 Leuven, Belgium;2.Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions, Department of Microbial and Molecular Systems, Celestijnenlaan 200f, P.O. Box 2454, 3001 Leuven, Belgium; (R.d.O.-S.); (J.M.); (R.A.); (D.S.)
Abstract:The demand for more ecological, highly engineered hydrogel beads is driven by a multitude of applications such as enzyme immobilization, tissue engineering and superabsorbent materials. Despite great interest in hydrogel fabrication and utilization, the interaction of hydrogels with water is not fully understood. In this work, NMR relaxometry experiments were performed to study bead–water interactions, by probing the changes in bead morphology and surface energy resulting from the incorporation of carboxymethyl cellulose (CMC) into a cellulose matrix. The results show that CMC improves the swelling capacity of the beads, from 1.99 to 17.49, for pure cellulose beads and beads prepared with 30% CMC, respectively. Changes in water mobility and interaction energy were evaluated by NMR relaxometry. Our findings indicate a 2-fold effect arising from the CMC incorporation: bead/water interactions were enhanced by the addition of CMC, with minor additions having a greater effect on the surface energy parameter. At the same time, bead swelling was recorded, leading to a reduction in surface-bound water, enhancing water mobility inside the hydrogels. These findings suggest that topochemical engineering by adjusting the carboxymethyl cellulose content allows the tuning of water mobility and porosity in hybrid beads and potentially opens up new areas of application for this biomaterial.
Keywords:cellulose   cellulose beads   hydrogels   NMR relaxometry   low-field NMR   surface energy   swelling   porous materials
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号