首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterization of aggregate structures of phospholipid in the process of vesicle solubilization with sodium cholate using laser light scattering method
Authors:Changqi Sun  Yoh Sano  Hiroshi Kashiwagi  Masaharu Ueno
Institution:Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930–0194, Japan,
Faculty of Pharmaceutical Sciences, Setunan University, 45–1 Nagaotoge-machi, Hirakata 573–0101, Japan,
Abstract:The aggregate structures formed during vesicle solubilization by sodium cholate, and their properties, were characterized by static laser light scattering (SLS) and electrophoretic light scattering (ELS) methods. The change in dissymmetry value Z45 was observed by examining the regions of vesicles and micelles. The angular light scattering intensity data could be fitted with a modified shell model for the vesicles and a hollow cylinder model for the mixed micelles. In the case of the vesicles, the scattering curves were fitted with a spherical shell model by introducing the interparticle scattering factor S(q) and taking into account the intervesicle positional correlations, which is a function of the fractal dimension (D) and the interparticle correlation length (L). On the basis of the physical meanings of the fractal dimension and interparticle correlation length, the molecular packings of the membrane and the repulsive interaction between the vesicles were analyzed. Furthermore, using electrophoretic light scattering (ELS) the zeta potentials on the mixed vesicles were found to increase with the molar ratio (Re) of sodium cholate to egg yolk phosphatidylcholine (EggPC) in the membrane. It is suggested that the electrostatic properties of the vesicles result in repulsive interaction which is responsible for no fusion of the mixed vesicles. In addition, in the transition from vesicles to micelles, a cylinder-like micelle appeared as an intermediate structure.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号