首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Amorphous iron-(hydr) oxide networks at liquid/vapor interfaces: In situ X-ray scattering and spectroscopy studies
Authors:Wenjie Wang  Jacob Pleasants  Wei Bu  Rebecca Y Park  Ivan Kuzmenko  David Vaknin
Institution:Ames Laboratory, Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA.
Abstract:Surface sensitive X-ray reflectivity (XR), fluorescence (XF), and grazing incidence X-ray diffraction (GIXD) experiments were conducted to determine the accumulation of ferric iron Fe (III) or ferrous iron Fe (II) under dihexadecyl phosphate (DHDP) or arachidic acid (AA) Langmuir monolayers at liquid/vapor interfaces. Analysis of the X-ray reflectivity and fluorescence data of monolayers on the aqueous subphases containing FeCl(3) indicates remarkably high levels of surface-bound Fe (III) in number of Fe(3+) ions per molecule (DHDP or AA) that exceed the amount necessary to neutralize a hypothetically completely deprotonated monolayer (DHDP or AA). These results suggest that nano-scale iron (hydr) oxide complexes (oxides, hydroxides or oxyhydroxides) bind to the headgroups and effectively overcompensate the maximum possible charges at the interface. The lack of evidence of in-plane ordering in GIXD measurements and strong effects on the surface-pressure versus molecular area isotherms indicate that an amorphous network of iron (hydr) oxide complexes contiguous to the headgroups is formed. Similar experiments with FeCl(2) generally resulted with the oxidation of Fe (II)-Fe (III) which consequently leads to ferric Fe (III) complexes binding albeit with less iron at the interface. Controlling the oxidation of Fe (II) changes the nature and amount of binding significantly. The implications to biomineralization of iron (hydr) oxides are briefly discussed.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号