首页 | 本学科首页   官方微博 | 高级检索  
     

激光惯性约束聚变研究中高时空诊断技术研究进展
引用本文:王峰, 张兴, 理玉龙, 等. 激光惯性约束聚变研究中高时空诊断技术研究进展[J]. 强激光与粒子束, 2020, 32: 112002. doi: 10.11884/HPLPB202032.200136
作者姓名:王峰  张兴  理玉龙  陈伯伦  陈忠靖  徐涛  刘欣城  赵航  任宽  杨家敏  江少恩  张保汉
作者单位:中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
基金项目:国家重点研发计划项目(2017YFA0403300);国家自然科学基金项目(11805184,11805178,11805185);中国工程物理研究院院长基金项目(YZJJLX2019011);科学挑战专题项目(TZ2016001);中物院激光聚变研究中心青年人才基金项目(RCFPD4-2020-1)
摘    要:对国内激光惯性约束聚变(ICF)领域高时空分辨技术的最新进展进行了比较全面的介绍。针对热斑诊断时间分辨优于10 ps、空间分辨优于10 μm、能区10~30 keV的需求,从光学、X射线、核诊断和计算成像几个角度,比较系统地介绍了最新的进展。光学领域主要介绍基于泵浦探测技术的全光扫描和全光分幅技术。全光扫描技术的时间分辨可以达到200 fs,全光分幅的时间分辨可以达到5 ps,空间分辨可以达到5 μm。该系统的主要部件为光学器件,在ICF未来的强电磁、强电离环境下有很好的应用前景。X射线系统主要介绍最近几年发展的高分辨KB显微镜,其采用STTS构型,可将空间分辨提高到3 μm,满足当前高分辨的需求。漂移管技术的时间分辨可以达到10 ps,作为一种正在发展的技术,对此进行了较为全面的分析。中子成像系统主要介绍了高空间分辨的记录系统以及对应的瞄准技术的进展,其空间分辨可以达到20~25 μm。计算成像作为一个全新的分支,最近引起了ICF领域的广泛关注。着重介绍了三维光场技术和在高时空分辨领域有很好应用前景的压缩感知超快成像(CUP)技术,对其可能在ICF领域中的应用提出了设想。

关 键 词:惯性约束聚变   高时空分辨   诊断   全光分幅技术   X射线诊断   电子成像技术
收稿时间:2020-05-19
修稿时间:2020-07-10

Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion
Wang Feng, Zhang Xing, Li Yulong, et al. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32: 112002. doi: 10.11884/HPLPB202032.200136
Authors:Wang Feng  Zhang Xing  Li Yulong  Chen Bolun  Chen Zhongjing  Xu Tao  Liu Xincheng  Zhao Hang  Ren Kuan  Yang Jiamin  Jiang Shaoen  Zhang Baohan
Affiliation:Laser Fusion Research Center, CAEP, P. O. Box 919-988, Mianyang 621900, China
Abstract:This article reviews the latest developments of high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion (ICF) in China. Focusing on the needs of hot spot diagnosis with temporal resolution better than 10 ps, spatial resolution better than 10 μm, and energy range of 10−30 keV, we introduce recent progress in optical, X-ray, and nuclear diagnostics, as well as computational imaging. In optical section, we introduce two diagnostics based on the pump detection technique: all-optical scanning, with temporal resolution up to 200 fs, and all-optical framing, with temporal and spatial resolution up to 5 ps and 5 μm respectively. Since the main components are optical, these systems have great potentials to be applied in the strong electromagnetic, ionizing environment of future ICF research. In X-ray section, we introduce a recently developed high-resolution kirkpatrick-Baez (KB) microscope, which adopts the STTS (S and T represent sagittal and tangential directions respectively) configuration and improves the spatial resolution to 3 μm, meeting the current requirements. Besides, we also discuss a developing technology—the drift tube technology, with temporal resolution up to 10 ps. In nuclear section, we mainly introduce the high-resolution recording system of the neutron imaging, with spatial resolution up to 20−25 μm, as well as the progress in the corresponding aiming technique. In addition, we introduce computational imaging, which is a brand new branch attracting growing attention in ICF field. We also emphasize the three dimensional light field imaging technique and compressed ultrafast photography (CUP) technique, and propose their possible applications in ICF field.
Keywords:inertial confinement fusion  high time- and space-resolution  diagnostic  all-opticalframing  X-ray diagnostic  electronic imaging technology
本文献已被 万方数据 等数据库收录!
点击此处可从《强激光与粒子束》浏览原始摘要信息
点击此处可从《强激光与粒子束》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号