首页 | 本学科首页   官方微博 | 高级检索  
     检索      

回转体高速倾斜入水的流场特性及结构响应
引用本文:高英杰,孙铁志,张桂勇,尤天庆,殷志宏,宗智.回转体高速倾斜入水的流场特性及结构响应[J].爆炸与冲击,2020,40(12).
作者姓名:高英杰  孙铁志  张桂勇  尤天庆  殷志宏  宗智
作者单位:1.大连理工大学船舶工程学院辽宁省深海浮动结构工程实验室,辽宁 大连 116024
基金项目:国家自然科学基金(51639003,51709042);中央高校基本科研业务费专项(DUT2017TB05);中国博士后科学基金(2018M631791,2019T120211);工信部高技术船舶科研项目(2017-614);辽宁省自然科学基金(20180550619);辽宁省“兴辽英才计划”(XLYC1908027);海洋工程国家重点实验室开放基金(1803)
摘    要:回转体高速入水过程涉及液体和固体的耦合作用,是一个复杂的非线性、非定常过程。为研究回转体高速入水的结构动响应及流场演变规律,本文中基于STAR-CCM+和ABAQUS平台,建立了回转体高速入水的双向流固耦合数值模型,开展了不同入水速度的回转体高速倾斜入水流固耦合数值计算。结果表明:数值计算的入水速度、位移曲线和空泡形态与实验结果良好吻合,验证了流固耦合方法的有效性;回转体倾斜高速入水的载荷先集中在触水部分边缘处,后集中于回转体底部中心处;流固耦合方法的入水冲击载荷峰值小于刚体的,弹性回转体的载荷曲线产生明显波动;撞水阶段,回转体空泡呈现不对称形态,随着入水加深,空泡不对称性变弱;入水速度60 m/s下,空泡发生表面闭合,回转体入水初速度越快,空泡表面闭合越晚;冲击载荷与入水速度有关,入水速度越大,峰值出现越早,震荡越明显,速度超过100 m/s时,回转体产生塑性形变。

关 键 词:回转体    高速入水    流固耦合    流场    载荷
收稿时间:2020-01-13

Flow characteristics and structure response of high-speed oblique water-entry for a revolution body
Institution:1.Liaoning Engineering Laboratory for Deep-Sea Floating Structures, School of Naval Architecture,Dalian University of Technology, Dalian 116024, Liaoning, China2.State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology, Dalian 116024, Liaoning, China3.Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China4.Beijing Aerospace System Engineering Research Institute, Beijing 100076, China
Abstract:The high-speed water-entry process of a revolution body involves fluid and structure interaction, which is a complex nonlinear and unsteady process. The revolution body with high speed is subjected to extreme impact load at the moment of hitting water surface which would cause great deformation or even damage to the structure. In order to investigate the physical understanding of the structural strength of revolution bodies and the mechanism of the cavity dynamics during high-speed water-entry process, a fluid-structure interaction (FSI) model based on a co-simulation progress between STAR-CCM+ and ABAQUS was adopted. The model performed a two-way interaction analysis which can consider the influence of the deformation of structure to fluid into. In the form of CFD analysis, a three-dimensional simulation with a six-degree-of-freedom model was carried out, in which the Shear Stress Transfer (SST) turbulence model and the volume of fluid (VOF) technique were used for turbulence computation and air-liquid interface tracking, respectively. In the part of FEM research, the shell mesh form with a whole Johnson-Cook material model was implemented to give a full consideration of deformation process and the accuracy of structure computation, which can effectively reflect the plastic deformation of structure. Firstly, a comparison between FSI result and experimental result of the high-speed water-entry process was conducted. The results show that the velocity attenuation, displacement and the cavity features are in good agreement with the experimental result, which proves two-way FSI method can be effectively applied into the research of high-speed water-entry problem. Then a numerical simulation of revolution body oblique water-entry with different velocity was carried out. The results show that the stress initially focuses on the edge of the bottom side of the revolution body, then it transports to the central area, remaining steady in the end. Compared with the results of rigid body, the peak value of impact load of the flexible body appears smaller due to the repeated deformation for buffer, which also causes the fluctuation of the load curve. After the initial water impacting, the cavity presents an asymmetric shape. As water-entry time increases, the asymmetry of cavity becomes weaker. In the process of 60 m/s oblique water-entry, surface closure of the cavity occurs. With the increase of water-entry velocity, the time of cavity surface closure takes longer. The peak value of the impact load whose period is quite short appears immediately at very beginning of water-entry process. After entering the water surface, the impact load of the revolution body decreases dramatically and rapidly and fluctuates slightly. The peak value of the impact load is related to water-entry velocity. The higher the velocity is, the earlier peak value of the impact load occurs and more obviously it fluctuates. As water-entry velocity exceeds 100 m/s, plastic deformation appears in the central area of bottom of revolution body.
Keywords:
点击此处可从《爆炸与冲击》浏览原始摘要信息
点击此处可从《爆炸与冲击》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号