首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical study of low-spin, high-spin, and intermediate-spin states of [Fe(III)(pap)2](+) (pap = N-2-pyridylmethylidene-2-hydroxyphenylaminato). Mechanism of light-induced excited spin state trapping
Authors:Ando Hideo  Nakao Yoshihide  Sato Hirofumi  Sakaki Shigeyoshi
Institution:Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
Abstract:The mechanism of light-induced excited spin state trapping (LIESST) of FeIII(pap)2]+ (pap = N-2-pyridylmethylidene-2-hydroxyphenylaminato) was discussed on the basis of potential energy surfaces (PESs) of several important spin states, where the PESs were evaluated with the DFT(B3LYP) method. The PES of the quartet spin state crosses those of the doublet and sextet spin states around its minimum. This means that the spin transition occurs from the quartet spin state to either the doublet spin state or the sextet spin state around the PES minimum of the quartet spin state. The PES minimum of the sextet spin state is slightly less stable than that of the doublet spin state by 0.18 eV (4.2 kcal/mol). This small energy difference is favorable for the LIESST. The doublet-sextet spin crossover point is 0.41 eV (9.6 kcal/mol) above the PES minimum of the sextet spin state. Because of this considerably large activation barrier, the thermal spin transition and the tunneling process do not occur easily. In the doublet spin state, the ligand to ligand charge transfer (LLCT) transition is calculated to be 2.16 eV with the TD-DFT(B3LYP) method, in which the pi orbital of the phenoxy moiety and the pi* orbital of the imine moiety in the pap ligand participate. This transition energy is moderately smaller than the visible light of 550 nm used experimentally. In the sextet spin state, the ligand to metal charge transfer (LMCT) transition is calculated to be at 2.36 eV, which is moderately higher than the visible light (550 nm). These results indicate that the irradiation of the visible light induces the LIESST to generate the sextet spin state but the reverse-LIESST is also somewhat induced by the visible light, indicating that the complete spin conversion from the doublet spin state to the sextet one does not occur, as reported experimentally.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号