首页 | 本学科首页   官方微博 | 高级检索  
     


Front Quenching in the G-equation Model Induced by Straining of Cellular Flow
Authors:Jack Xin  Yifeng Yu
Affiliation:1. Department of math, University of California at Irvine, Irvine, CA, 92697, USA
Abstract:We study homogenization of the G-equation with a flow straining term (or the strain G-equation) in two dimensional periodic cellular flow. The strain G-equation is a highly non-coercive and non-convex level set Hamilton–Jacobi equation. The main objective is to investigate how the flow induced straining (the nonconvex term) influences front propagation as the flow intensity A increases. Three distinct regimes are identified. When A is below the critical level, homogenization holds and the turbulent flame speed s T (effective Hamiltonian) is well-defined for any periodic flow with small divergence and is enhanced by the cellular flow as s TO(A/log A). In the second regime where A is slightly above the critical value, homogenization breaks down, and s T is not well-defined along any direction. Solutions become a mixture of a fast moving part and a stagnant part. When A is sufficiently large, the whole flame front ceases to propagate forward due to the flow induced straining. In particular, along directions p = (±1, 0) and (0, ±1), s T is well-defined again with a value of zero (trapping). A partial homogenization result is also proved. If we consider a similar but relatively simpler Hamiltonian, the trapping occurs along all directions. The analysis is based on the two-player differential game representation of solutions, selection of game strategies and trapping regions, and construction of connecting trajectories.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号