首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanochemical synthesis and X‐ray structural characterization of three 3‐nitrophenol cocrystals with three aminal cage azaadamantanes: the role of the stereoelectronic effect on intermolecular hydrogen‐bonding patterns
Authors:Augusto Rivera,Jicli Jos   Rojas,John Sadat-Bernal,Jaime Rí  os-Motta,Michael Bolte
Affiliation:Augusto Rivera,Jicli José Rojas,John Sadat-Bernal,Jaime Ríos-Motta,Michael Bolte
Abstract:The structures of the cocrystalline adducts of 3‐nitrophenol (3‐NP) with 1,3,5,7‐tetraazatricyclo[3.3.1.13,7]decane [HMTA, ( 1 )] as the 2:1:1 hydrate, 2C6H5NO3·C6H12N4·H2O, ( 1a ), with 1,3,6,8‐tetraazatricyclo[4.3.1.13,8]undecane [TATU ( 2 )] as the 2:1 cocrystal, 2C6H5NO3·C7H14N4, ( 2a ), and with 1,3,6,8‐tetraazatricyclo[4.4.1.13,8]dodecane [TATD, ( 3 )] as the 2:1 cocrystal, 2C6H5NO3·C8H16N4, ( 3a ), are reported. In the binary crystals ( 2a ) and ( 3a ), the 3‐nitrophenol molecules are linked via O—H…N hydrogen bonds into aminal cage azaadamantanes. In ( 1a ), the structure is stabilized by O—H…N and O—H…O hydrogen bonds, and generates ternary cocrystals. There are C—H…O hydrogen bonds present in all three cocrystals, and in ( 1a ), there are also C—H…O and C—H…π interactions present. The presence of an ethylene bridge in the structures of ( 2 ) and ( 3 ) defines the formation of a hydrogen‐bonded motif in the supramolecular architectures of ( 2a ) and ( 3a ). The differences in the C—N bond lengths of the aminal cage structures, as a result of hyperconjugative interactions and electron delocalization, were analysed. These three cocrystals were obtained by the solvent‐free assisted grinding method. Crystals suitable for single‐crystal X‐ray diffraction were grown by slow evaporation from a mixture of hexanes.
Keywords:mechanochemistry  aminal cage  azaadamantane  HMTA  TATD  hydrogen bond  anomeric effect  crystal structure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号