首页 | 本学科首页   官方微博 | 高级检索  
     

无约束最优化的信赖域BB法
引用本文:刘亚君,刘新为. 无约束最优化的信赖域BB法[J]. 计算数学, 2016, 38(1): 96-112
作者姓名:刘亚君  刘新为
作者单位:1. 南开大学数学科学学院, 天津 300071;
2. 河北工业大学理学院, 天津 300401
基金项目:国家自然科学基金,河北省自然科学基金
摘    要:梯度法是求解无约束最优化的一类重要方法.步长选取的好坏与梯度法的数值表现息息相关.注意到BB步长隐含了目标函数的二阶信息,本文将BB法与信赖域方法相结合,利用BB步长的倒数去近似目标函数的Hesse矩阵,同时利用信赖域子问题更加灵活地选取梯度法的步长,给出求解无约束最优化问题的单调和非单调信赖域BB法.在适当的假设条件下,证明了算法的全局收敛性.数值试验表明,与已有的求解无约束优化问题的BB类型的方法相比,非单调信赖域BB法中e_k=‖x_k-x~*‖的下降呈现更明显的阶梯状和单调性,因此收敛速度更快.

关 键 词:无约束最优化  BB 法  信赖域方法  全局收敛性
收稿时间:2015-05-13;

TRUST REGION BB METHODS FOR UNCONSTRAINED MINIMIZATION
Liu Yajun,Liu Xinwei. TRUST REGION BB METHODS FOR UNCONSTRAINED MINIMIZATION[J]. Mathematica Numerica Sinica, 2016, 38(1): 96-112
Authors:Liu Yajun  Liu Xinwei
Affiliation:1. School of Mathematical Sciences, Nankai University, Tianjin 300071, China;
2. School of Science, Hebei University of Technology, Tianjin 300401, China
Abstract:It is well known that the numerical performances of the gradient methods are closely dependent on how to select the step-lengths in iterations. Notice that the BB step-length implies some second-order information of the objective function, by using the BB step in the trust region method, we propose a monotone trust region BB method and its nonmonotone version for unconstrained optimization problems. Our methods use the inverse of the BB step-lengths to approximate the Hesse matrix of objective function and select step-lengths of the gradient method by the trust region subproblems flexibly. Under suitable conditions, the new methods are proved to be globally convergent. Numerical tests show that the measure of error ek=‖xk-x*‖ obtained by the nonmonotone trust region BB method can decrease faster in comparison with some existing BB methods.
Keywords:unconstrained optimization  Barzilai and Borwein (BB) gradient method  trust region method  global convergence
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算数学》浏览原始摘要信息
点击此处可从《计算数学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号