首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Proper orthogonal decomposition analysis for cycle-to-cycle variations of engine flow. Effect of a control device in an inlet pipe
Authors:Trung-Thanh Vu  Philippe Guibert
Institution:1. Institut Jean Le Rond d’Alembert, Université Pierre et Marie Curie, 2 Place de la Gare de Ceinture, 78210, Saint Cyr l’Ecole, France
Abstract:This paper aims to investigate cycle-to-cycle variations of non-reacting flow inside a motored single-cylinder transparent engine in order to judge the insertion amplitude of a control device able to displace linearly inside the inlet pipe. Three positions corresponding to three insertion amplitudes are implemented to modify the main aerodynamic properties from one cycle to the next. Numerous particle image velocimetry (PIV) two-dimensional velocity fields following cycle database are post-treated to discriminate specific contributions of the fluctuating flow. We performed a multiple snapshot proper orthogonal decomposition (POD) in the tumble plane of a pent roof SI engine. The analytical process consists of a triple decomposition for each instantaneous velocity field into three distinctive parts named mean part, coherent part and turbulent part. The 3rd- and 4th-centered statistical moments of the proper orthogonal decomposition (POD)-filtered velocity field as well as the probability density function of the PIV realizations proved that the POD extracts different behaviors of the flow. Especially, the cyclic variability is assumed to be contained essentially in the coherent part. Thus, the cycle-to-cycle variations of the engine flows might be provided from the corresponding POD temporal coefficients. It has been shown that the in-cylinder aerodynamic dispersions can be adapted and monitored by controlling the insertion depth of the control instrument inside the inlet pipe.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号