首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions
Authors:Zhao Nana  Wei Yang  Sun Nijuan  Chen Qian  Bai Jingwei  Zhou Longping  Qin Yao  Li Meixian  Qi Limin
Institution:Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, P. R. China.
Abstract:Well-defined gold nanobelts as well as unique gold nanocombs made of nanobelts were readily synthesized by the reduction of HAuCl4 with ascorbic acid in aqueous mixed solutions of the cationic surfactant cetyltrimethylammonium bromide (CTAB) and the anionic surfactant sodium dodecylsulfonate (SDSn). Single-crystalline gold nanobelts grown along the <110> and <211> directions were prepared in mixed CTAB-SDSn solutions at 4 and 27 degrees C, respectively. Furthermore, single-crystalline gold nanocombs consisting of a <110>-oriented stem nanobelt and numerous <211>-oriented nanobelts grown perpendicularly on one side of the stem were fabricated by a two-step process with temperature changing from 4 to 27 degrees C. It was proposed that the mixed cationic-anionic surfactants exerted a subtle control on the growth of gold nanocrystals in solution due to the cooperative effect of mixed surfactants. This synthetic strategy may open a new route for the mild fabrication and hierarchical assembly of metal nanobelts in solution. The obtained gold nanobelts showed good electrocatalytic activity toward the oxidation of methanol in alkaline solution; in particular, the electrode modified with the nanobelts obtained at 27 degrees C exhibited an electrocatalytic activity considerably higher than normal polycrystalline gold electrode. Moreover, the gold nanobelts were used as the surface-enhanced Raman scattering (SERS) substrate for detecting the enhanced Raman spectra of p-aminothiophenol (PATP) molecules, and the gold nanobelts obtained at 4 degrees C exhibited an unusual larger enhancement of the b2 modes relative to the a1 modes for the adsorbed PATP molecules.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号