首页 | 本学科首页   官方微博 | 高级检索  
     


Sonoactivated polycrystalline Ni electrodes for alkaline oxygen evolution reaction
Affiliation:1. Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway;2. Electrochemistry Research Group, Department of Materials Science and Engineering, Faculty of Natural Sciences. Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway;3. Green Hydrogen Lab (GH2Lab), Pollet Research Group, Hydrogen Research Institute, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
Abstract:The development of cost-effective and active water-splitting electrocatalysts is an essential step toward the realization of sustainable energy. Its success requires an intensive improvement in the kinetics of the anodic half-reaction of the oxygen evolution reaction (OER), which determines the overall system efficiency to a large extent. In this work, we designed a facile and one-route strategy to activate the surface of metallic nickel (Ni) for the OER in alkaline media by ultrasound (24 kHz, 44 W, 60% acoustic amplitude, ultrasonic horn). Sonoactivated Ni showed enhanced OER activity with a much lower potential at + 10 mA cm−2 of + 1.594 V vs. RHE after 30 min ultrasonic treatment compared to + 1.617 V vs. RHE before ultrasonication. In addition, lower charge transfer resistance of 11.1 Ω was observed for sonoactivated Ni as compared to 98.5 Ω for non-sonoactivated Ni. In our conditions, ultrasound did not greatly affect the electrochemical surface area (Aecsa) and Tafel slopes however, the enhancement of OER activity can be due to the formation of free OH radicals resulting from cavitation bubbles collapsing at the electrode/electrolyte interface.
Keywords:Electrolysis  Oxygen evolution reaction  Alkaline  Nickel  Ultrasound
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号