首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effective control of antibiotic resistance using a sonication-based combinational treatment and its application to fresh food
Institution:Division of Applied Food System, Major in Food Science & Technology, Seoul Women’s University, Seoul 01797, South Korea
Abstract:Antibiotics have been widely used to treat several infectious diseases. However, the overuse of antibiotics has promoted the emergence and spread of antibiotic resistant bacteria (ARB) in various fields, including the food industry. In this study, the antimicrobial efficacies of two conventional sterilization methods, mild heat, and sonication, were evaluated and optimized to develop a new strategy against ARB. Simultaneous mild heat and sonication (HS) treatment led to a significant reduction in viable cell counts, achieving a 5.58-log reduction in 4 min. However, no remarkable decrease in viable cell counts was observed in individually treated groups. Interestingly, the release of antibiotic resistance genes (ARGs) increased in a time-dependent manner in the heat-treated and HS-treated groups. The inactivation levels of ARGs increased as the HS treatment time increased from 2 to 8 min, and most ARGs were degraded after 8 min. In contrast, no significant inactivation of ARGs was observed in the heat-treated and sonication-treated groups after 8 min. These results reveal the synergistic effect of the combination treatment in controlling not only ARB but also ARGs. Finally, on applying this newly developed combination treatment to fresh food (cherry tomato and carrot juice), 3.97- and 4.28-log microbial inactivation was achieved, respectively. In addition, combination treatment did not affect food quality during storage for 5 days. Moreover, HS treatment effectively inactivated ARGs in fresh food systems.
Keywords:Sonication  Antibiotic resistance  Mild heat  Synergistic effect  Food quality
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号