首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Equilibrium geometries and associated energetic properties of mixed metal-silicon clusters from global optimization
Authors:Wu Jianhua  Hagelberg Frank
Institution:Computational Center for Molecular Structure and Interactions, Department of Physics, Atmospheric Sciences, Jackson State University, Mississippi 39217, USA.
Abstract:The structural properties of the cluster series Me(m)Si(7-m) (Me = Cu and Li, m < or = 6) are studied by density functional theory (DFT) employing a plane wave basis. The equilibrium geometries and energetic properties of these clusters are obtained by use of the simulated annealing procedure in conjunction with the Nosé thermostat algorithm. The lowest energy isomer thus obtained is analyzed by density functional theory at the B3LYP/6-311+G(d,p) level including all electrons. Pentagonal ground state structures derived from the D(5)(h) equilibrium geometries of both Si(7) and Cu(7) are obtained for Cu(m)Si(7-m) with m < 6. The Li(m)Si(7-m) clusters, in contrast, tend toward adsorption geometries where m Li atoms are attached to a Si(7-m)framework with pronounced negative charge. For both Li(m)Si(7-m) and Cu(m)Si(7-m), a marked decrease of the energy gap is found as the number of metal atom constituents increases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号