首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effect of substitution on the thermo-physical properties of LaMnxV1−xO4−δ
Authors:S VarmaBR Ambekar  BN WaniNM Gupta
Institution:Applied Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India
Abstract:LaMnxV1−xO4−δ(0≤x≤1) samples were characterized using thermogravimetry, thermo-dilatometry, high-temperature X-ray diffraction (HTXRD) and temperature-programmed reduction techniques, with an objective to explore the role of substitution on their thermo-physical properties, which may have a direct bearing on their catalytic behavior. Even though the substituted compositions (x<0.8) were of a single phase, their reduction occurred in two steps, a lower temperature step corresponding to Mn4+→Mn3+/Mn2+ and another higher temperature one related to V5+→V3+. The dilatometric measurements gave similar values of linear thermal expansion coefficient (α1) at temperatures up to 600 °C, both for LaVO4 and substituted samples. A different behavior was, however, observed at higher temperatures, whereas thermal contraction was observed in case of LaVO4 for measurements at temperatures above 700 °C, the value of α1 remained almost constant in case of the substituted samples. Furthermore, the HTXRD data revealed expansion in cell volume for all temperatures up to 950 °C, irrespective of the substitution. These results therefore point to a higher degree of sintering in LaVO4 as compared to Mn-doped samples on heating at temperatures above 700 °C. It is inferred that the resistance to sintering and the lowering of the reduction temperature are both responsible to the higher catalytic activity of the substituted samples and their compositional stability during the repeated cycles of reduction-reoxidation, as reported earlier Appl. Catal. A 205 (2001) 295].
Keywords:Orthovanadate  TG  TPR  HTXRD  Dilatometry  Role of substitution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号