首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Decision problems in the space of Dehn fillings
Authors:William Jaco  Eric Sedgwick
Institution:a Math Department, Oklahoma State University, Stillwater, OK, 74078 USA
b School of CTI, Depaul University, Chicago, IL, 60604 USA
Abstract:Normal surface theory is used to study Dehn fillings of a knot-manifold. We use that any triangulation of a knot-manifold may be modified to a triangulation having just one vertex in the boundary. In this situation, it is shown that there is a finite computable set of slopes on the boundary of the knot-manifold, which come from boundary slopes of normal or almost normal surfaces. This is combined with existence theorems for normal and almost normal surfaces to construct algorithms to determine precisely those manifolds obtained by Dehn filling of a given knot-manifold that: (1) are reducible, (2) contain two-sided incompressible surfaces, (3) are Haken, (4) fiber over S1, (5) are the 3-sphere, and (6) are a lens space. Each of these algorithms is a finite computation.Moreover, in the case of essential surfaces, we show that the topology of each filled manifold is strongly reflected in the combinatorial properties of a triangulation of the knot-manifold with just one vertex in the boundary. If a filled manifold contains an essential surface then the knot-manifold contains an essential normal vertex solution which caps off to an essential surface of the same type in the filled manifold. (Normal vertex solutions are the premier class of normal surface and are computable.)
Keywords:Algorithms  Dehn filling  Normal surface  Knot  Link  Reducible  Incompressible surface  Exceptional surgery  Haken-manifold  Vertex solution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号