首页 | 本学科首页   官方微博 | 高级检索  
     


Exploring the thermodynamic limits of computation in integrated systems: magnetic memory, nanomagnetic logic, and the Landauer limit
Authors:Lambson Brian  Carlton David  Bokor Jeffrey
Affiliation:Department of Electrical Engineering and Computer Science, University of California, Berkeley, 94709, USA.
Abstract:Nanomagnetic memory and logic circuits are attractive integrated platforms for studying the fundamental thermodynamic limits of computation. Using the stochastic Landau-Lifshitz-Gilbert equation, we show by direct calculation that the amount of energy dissipated during nanomagnet erasure approaches Landauer's thermodynamic limit of kTln(2) with high precision when the external magnetic fields are applied slowly. In addition, we find that nanomagnet systems behave according to generalized formulations of Landauer's principle that hold for small systems and generic logic operations. In all cases, the results are independent of the anisotropy energy of the nanomagnet. Lastly, we apply our computational approach to a nanomagnet majority logic gate, where we find that dissipationless, reversible computation can be achieved when the magnetic fields are applied in the appropriate order.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号