首页 | 本学科首页   官方微博 | 高级检索  
     


Three-dimensional manganese dioxide-functionalized carbon nanotube electrodes for electrochemical supercapacitors
Authors:Meredith C. K. Sellers  Benjamin M. Castle  Charles P. Marsh
Affiliation:1. Construction Engineering Research Laboratory, US Army Engineer Research and Development Center, 2902 Newmark Drive, Champaign, IL, 61822, USA
2. Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, 216 Talbot Laboratory, 104 South Wright Street, Urbana, IL, 61801, USA
Abstract:Three-dimensional manganese dioxide (MnO2)-functionalized multiwalled carbon nanotube (MWCNT) electrodes have been produced by a simple and scalable thermal decomposition process. The electrodes are prepared by treating planar MWCNT sheets with manganese(II) nitrate (Mn(NO3)2) solution and annealing at low temperature (200–300 °C) and ambient pressure. The morphology, chemical composition, and structure of the resulting matrices have been investigated with scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. Supercapacitors assembled with three-dimensional electrodes exhibit a 14-fold increase in specific capacitance (C sp) in comparison to those containing pristine, two-dimensional MWCNT electrodes. C sp varies linearly with Mn(NO3)2 thermal decomposition temperature (from 100 to 61 F/g at 0.2 A/g), a trend that is discussed in the context of nitrate reaction chemistry and MWCNT structure. This efficient and promising approach allows for simultaneous enhancement of electrode–electrolyte contact area and incorporation of redox-based charge storage within electrochemical capacitors.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号