Three-dimensional manganese dioxide-functionalized carbon nanotube electrodes for electrochemical supercapacitors |
| |
Authors: | Meredith C. K. Sellers Benjamin M. Castle Charles P. Marsh |
| |
Affiliation: | 1. Construction Engineering Research Laboratory, US Army Engineer Research and Development Center, 2902 Newmark Drive, Champaign, IL, 61822, USA 2. Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, 216 Talbot Laboratory, 104 South Wright Street, Urbana, IL, 61801, USA
|
| |
Abstract: | Three-dimensional manganese dioxide (MnO2)-functionalized multiwalled carbon nanotube (MWCNT) electrodes have been produced by a simple and scalable thermal decomposition process. The electrodes are prepared by treating planar MWCNT sheets with manganese(II) nitrate (Mn(NO3)2) solution and annealing at low temperature (200–300 °C) and ambient pressure. The morphology, chemical composition, and structure of the resulting matrices have been investigated with scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. Supercapacitors assembled with three-dimensional electrodes exhibit a 14-fold increase in specific capacitance (C sp) in comparison to those containing pristine, two-dimensional MWCNT electrodes. C sp varies linearly with Mn(NO3)2 thermal decomposition temperature (from 100 to 61 F/g at 0.2 A/g), a trend that is discussed in the context of nitrate reaction chemistry and MWCNT structure. This efficient and promising approach allows for simultaneous enhancement of electrode–electrolyte contact area and incorporation of redox-based charge storage within electrochemical capacitors. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|