首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nonprecious metal catalysts for fuel cell applications: electrochemical dioxygen activation by a series of first row transition metal tris(2-pyridylmethyl)amine complexes
Authors:Ward Ashleigh L  Elbaz Lior  Kerr John B  Arnold John
Institution:Department of Chemistry, University of California, Berkeley, California 94720, USA.
Abstract:A series of divalent first row triflate complexes supported by the ligand tris(2-pyridylmethyl)amine (TPA) have been investigated as oxygen reduction catalysts for fuel cell applications. (TPA)M(2+)](n+) (M = Mn, Fe, Co, Ni, and Cu) derivatives were synthesized and characterized by X-ray crystallography, cyclic voltammetry, NMR spectroscopy, magnetic susceptibility, IR spectroscopy, and conductance measurements. The stoichiometric and electrochemical O(2) reactivities of the series were examined. Rotating-ring disk electrode (RRDE) voltammetry was used to examine the catalytic activity of the complexes on a carbon support in acidic media, emulating fuel cell performance. The iron complex displayed a selectivity of 89% for four-electron conversion and demonstrated the fastest reaction kinetics, as determined by a kinetic current of 7.6 mA. Additionally, the Mn, Co, and Cu complexes all showed selective four-electron oxygen reduction (<28% H(2)O(2)) at onset potentials (~0.44 V vs RHE) comparable to state of the art molecular catalysts, while being straightforward to access synthetically and derived from nonprecious metals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号