首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical Investigations of the Activation of CO_2 on the Transition Metal-doped Cu(100) and Cu(111) Surfaces
Abstract:Periodic density functional theory calculations have been performed to investigate the chemisorption behavior of CO_2 molecule on a series of surface alloys that are built by dispersing individual middle-late transition metal(TM) atoms(TM = Fe, Co, Ni, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au) on the Cu(100) and Cu(111) surfaces. The most stable configurations of CO_2 chemisorbed on different TM/Cu surfaces are determined, and the results show that among the late transition metals, Co, Ru, and Os are potentially good dopants to enhance the chemisorption and activation of CO_2 on copper surfaces. To obtain a deep understanding of the adsorption property, the bonding characteristics of the adsorption bonds are carefully examined by the crystal orbital Hamilton population technique, which reveals that the TM atom primarily provides d orbitals with z-component, namely d_z~2, d_(xz), and d_(yz) orbitals to interact with the adsorbate.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号