首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the upper critical dimension of Bernoulli percolation
Authors:J T Chayes  L Chayes
Institution:1. Laboratory of Atomic and Solid State Physics, Cornell University, 14853, Ithaca, NY, USA
Abstract:We derive a set of inequalities for thed-dimensional independent percolation problem. Assuming the existence of critical exponents, these inequalities imply: $$\begin{gathered} f + v \geqq 1 + \beta _Q , \hfill \\ \mu + v \geqq 1 + \beta _Q , \hfill \\ \zeta \geqq \min \left\{ {1,\frac{{v^, }}{v}} \right\}, \hfill \\ \end{gathered} $$ where the above exponents aref: the flow constant exponent, ν(ν′): the correlation length exponent below (above) threshold, μ: the surface tension exponent, β Q : the backbone density exponent and ζ: the chemical distance exponent. Note that all of these inequalities are mean-field bounds, and that they relate the exponentv defined from below the percolation threshold to exponents defined from above threshold. Furthermore, we combine the strategy of the proofs of these inequalities with notions of finite-size scaling to derive: $$\max \{ dv,dv^, \} \geqq 1 + \beta _Q ,$$ whered is the lattice dimension. Since β Q ≧2β, where β is the percolation density exponent, the final bound implies that, below six dimensions, the standard order parameter and correlation length exponents cannot simultaneously assume their mean-field values; hence an implicit bound on the upper critical dimension:d c ≧6.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号